Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tích chất dãy tỉ số bằng nhau ta có:
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
=> x=y=z
Ta có: 1 + x/y = (x+y)/y = (y+y)/y = 2y/y = 2
1+ y/z = (y+z)/z = (z+z)/z = 2z/z = 2
1 + z/x = (z+x)/z = (x+x)/x = 2x/x = 2
Vậy B= 2.2.2 = 8
theo t/c dãy tỉ số=nhau:
\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)
=>x=y=z
\(1+\frac{x}{y}=\frac{x+y}{y}=\frac{y+y}{y}=\frac{2y}{y}=2\)
\(1+\frac{y}{z}=\frac{y+z}{z}=\frac{z+z}{z}=\frac{2z}{z}=2\)
\(1+\frac{z}{x}=\frac{z+x}{x}=\frac{x+x}{x}=\frac{2x}{x}=2\)
=>B=2.2.2=8
\(\frac{3x+3y+3z}{x+y+z}\)=\(\frac{1}{3}\)
\(\Leftrightarrow x=\frac{1}{2};y=\frac{1}{2};z=-\frac{1}{2}\)
\(\Leftrightarrow B=\left(1+\frac{\frac{1}{2}}{\frac{1}{2}}\right)\left(1+\frac{\frac{1}{2}}{\frac{-1}{2}}\right)\left(1+\frac{\frac{-1}{2}}{\frac{1}{2}}\right)\)=0
cộng thêm 2 mỗi bên : \(\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)
\(\frac{y+z+x}{x}=\frac{z+x+y}{y}=\frac{x+y+z}{z}\) => x =y =z ( vì tử = nhau)
=> B = 2.2.2 =8
Ta có : \(B=\frac{x+y}{y}.\frac{z+y}{z}=\frac{x+z}{x}=\frac{\left(x+y\right)\left(z+y\right)\left(x+z\right)}{xyz}\)
Từ \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)
\(\Rightarrow\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)
\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)
Nếu x + y + z = 0
=> x + y = - z
=> z + y = - x
=> z + x = - y
Khi đó : B = \(\frac{\left(-x\right)\left(-y\right)\left(-z\right)}{xyz}=-\frac{xyz}{xyz}=-1\)
Nếu x + y + z \(\ne\)0
=> \(\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\Rightarrow x=y=z\)
Khi đó \(B=\frac{\left(x+y\right)^3}{x^3}=\frac{\left(2x\right)^3}{x^3}=\frac{2^3.x^3}{x^3}=8\)
Vậy nếu x + y + z = 0 B = - 1
nếu x + y + z \(\ne\)0 thì B = 8
Cộng vế 2 đẳng thức đầu lại ta được
(y+z-x+z+x-y+z+y-z)/(x+y+z)=2 nên (x+z-y)/y=2 hay x+z=3y, tương tự y+z=3x, x+y=3z nên GT=27
z khác 0 thỏa mãn điều kiện $\frac{y+z-x}{x - Giúp tôi giải ...