Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
http://olm.vn/hỏi-đáp/question/584545.html chờ xí tui thấy cái tên rồi giải cho bài 2
1/
\(\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}=\frac{2n+1+\left(3n-5\right)-\left(4n-5\right)}{n-3}=\frac{2n+1+3n-5-4n+5}{n-3}=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=\frac{n-3}{n-3}+\frac{4}{n-3}=1+\frac{4}{n-3}\)
Để S là số nguyên <=> n - 3 thuộc Ư(4) = {1;-1;2;-2;4;-4}
n-3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 4 | 2 | 5 | 1 | 7 | -1 |
Vậy...
\(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}\)
\(\Rightarrow M< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}\)
\(\Rightarrow M< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}\)
\(\Rightarrow M< 1-\frac{1}{99}< 1\)
Dễ thấy M > 0 nên 0 < M < 1
Vậy M không là số tự nhiên.
\(S=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)
\(\Rightarrow S>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\) (50 số hạng \(\frac{1}{100}\))
\(\Rightarrow S>\frac{1}{100}.50=\frac{1}{2}\)
Vậy \(S>\frac{1}{2}\left(đpcm\right)\)
Gọi phân số cần tìm là \(\frac{a}{b}\left(a,b\in Z,b\ne0,\left(a,b\right)=1\right)\)
Theo đề ta có \(\frac{9a}{10b}\in Z\), \(\frac{6a}{5b}\in Z\) và \(\frac{3a}{4b}\in Z\)
=> \(9a⋮10b\) => \(a⋮10\) và \(9⋮b\)
\(6a⋮5b\) => \(a⋮5\) và \(6⋮b\)
\(3a⋮4b\) =>\(a⋮4\) và \(3⋮b\)
Để phân số cần tìm là nhỏ nhất thì a nhỏ nhất và b lớn nhất
=> a=BCNN(10;5;4)
b=ƯCLN(9;6;3)
BCNN(10;5;4)=20
ƯCLN( 9;6;3)=3
=> Phân số cần tìm là 20/3