K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2017

\(A=1+3+3^2+...+3^{59}\\ =\left(1+3+3^2+3^3+3^4+3^5\right)+\left(3^6+3^7+3^8+3^9+3^{10}+3^{11}\right)+...+\left(3^{54}+3^{55}+3^{56}+3^{57}+3^{58}+3^{59}\right)\\ =1\left(1+3+3^2+3^3+3^4+3^5\right)+3^6\left(1+3+3^2+3^3+3^4+3^5\right)+...+3^{54}\left(1+3+3^2+3^3+3^4+3^5\right)\\ =\left(1+3+3^2+3^3+3^4+3^5\right)\left(1+3^6+...+3^{54}\right)\\ =364\left(1+3^6+...+3^{54}\right)\\ =4\cdot13\cdot7\left(1+3^6+...+3^{54}\right)\text{ chia hết cho 4 và 13}\)

23 tháng 5 2017

câu 2 A=

2(1+2+2^2+2^3+2^4)+2^6(1+2+2^2+2^3+2^4)+........+2^96(1+2+2^2+2^3+2^4)

suy ra 2.31+2^6.31+.......+2^96.31=A

suy ra A chia hết cho 31

23 tháng 5 2017

câu 1

A=(1-5-9+13)+(17-21-25+29)+........+(2001-2005-2009+2013)+2017

=0+0+0+0+.......+0+2017

=2017

a: \(7\cdot3^x=5\cdot3^7+2\cdot3^7\)

\(\Leftrightarrow7\cdot3^x=7\cdot3^7\)

=>3x=37

hay x=7

b: \(4^{x+3}-3\cdot4^{x+1}=13\cdot4^{11}\)

\(\Leftrightarrow4^{x+1}\left(4^2-3\right)=13\cdot4^{11}\)

=>x+1=11

hay x=10

d: \(\left(x-1\right)^{13}=\left(x-1\right)^{12}\)

\(\Leftrightarrow\left(x-1\right)^{12}\left(x-2\right)=0\)

hay \(x\in\left\{1;2\right\}\)

7 tháng 8 2016

a) \(\left(6x-5y\right)^2=36x^2-60xy+25y^2\)

b) \(\left(4x-1\right)^2=16x^2-8x+1\)

c) \(\left(x+2\right)^2=x^2+4x+4\)

d) \(x^2-64=\left(x-8\right)\left(x+8\right)\)

e) \(4x^2-64=\left(2x-8\right)\left(2x+8\right)\)

f) \(25x^2-4=\left(5x-2\right)\left(5x+2\right)\)

g) \(\left(x+1\right)^3=x^3+3x^2+3x+1\)

h) \(\left(x-3\right)^3=x^3-9x^2+27x-27\)

k) \(x^3+8=\left(x+2\right)\left(x^2-2x+4\right)\)

l) \(x^3-125=\left(x-5\right)\left(x^2+5x+25\right)\)

y) \(27y^3-1=\left(3y-1\right)\left(9y^2+3y+1\right)\)

7 tháng 8 2016

ai Giúp mình với

 

15 tháng 4 2017

Đây là cuộc thi nhé. cần sự công bằng. Mong em không tái phạm lần sau. Bạn sẽ bị khóa nick hoặc trừ 5000 điểm nhé!

BQT thân gửi em!

__BQT Lớp 6/7 Hỏi Đáp__

25 tháng 10 2018

\(A=1+2+2^2+.....+2^{2018}\)

\(\Leftrightarrow2A=2+2^2+....+2^{2018}+2^{2019}\)

\(\Leftrightarrow2A-A=\left(2+2^2+....+2^{2019}\right)-\left(1+2+2^2+....+2^{2018}\right)\)

\(\Leftrightarrow A=2^{2019}-1< 2^{2019}\)

Vậy \(A< 2^{2019}\)

14 tháng 8 2020

Đề bài : Chứng minh rằng tổng lập phương của các số tự nhiên liên tiếp từ 1 đến n bằng bình phương của tổng từ 1 đến n ( n tự nhiên ). Hay ta cần chứng minh : \(1^3+2^3+3^3+4^3+....+n^3=\left(1+2+....+n\right)^2\) (*)

Lời giải : 

+) Xét \(n=1\) thì ta có : \(1^3=1^2\) ( đúng ) 

Suy ra (*) đúng với \(n=1\) (1)

+) Xét \(n=2\) ta có : \(1^3+2^3=1+8=9\)\(\left(1+2\right)^2=3^2=9\)

\(\Rightarrow1^3+2^3=\left(1+2\right)^2\) ( đúng ). Nên (*) đúng với \(n=2\) (2)

+) Giả sử (*) đúng với \(n=k\). Tức là : \(1^3+2^3+3^3+....+k^3=\left(1+2+...+k\right)^2\).

Ta cần chứng minh \(n=k+1\) cũng đúng với (*). Thật vậy , ta có :

\(1^3+2^3+3^3+.....+\left(k+1\right)^3\)

\(=1^3+2^3+....+k^3+\left(k+1\right)^3\)

\(=\left(1+2+3+....+k\right)^2+\left(k+1\right)^3\)

Xét biểu thức \(\left(k+1\right)^2+2.\left(k+1\right).\left(1+2+3+....+k\right)\)

\(=\left(k+1\right)^2+2.\left(k+1\right)\cdot\frac{\left(k+1\right).k}{2}\)

\(=\left(k+1\right)^2+\left(k+1\right)^2.k=\left(k+1\right)^3\)

Do đó \(1^3+2^3+....+\left(k+1\right)^3\)

\(=\left(1+2+3+....+k\right)^2+2.\left(k+1\right)\left(1+2+....+k\right)+\left(k+1\right)^2\)

\(=\left(1+2+3+....+k+k+1\right)^2\)

Vậy (*) đúng với \(n=k+1\) (3)

Từ (1) (2) và (3) suy ra \(1^3+2^3+3^3+4^3+....+n^3=\left(1+2+....+n\right)^2\) với mọi \(n\in N\).