K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2016

\(\int^{\frac{1}{x}+\frac{1}{y}=\frac{1}{12}}_{\frac{9}{x}+\frac{6}{y}=\frac{3}{4}}\) đặt 1/x=a    1/y=b 

hệ pt trở thành  \(\int^{a+b=\frac{1}{12}}_{9a+6b=\frac{3}{4}}\)

 đến đây bấm máy hoặc giải ra là được 

17 tháng 1 2016

uk p xem ko' lm dk k

 

25 tháng 1 2018

Tham khảo :

hai vòi nước cùng chảy vào một cái bể không có nước,trong 4h48' sẽ đầy bể.nếu mở vòi thứ nhất trong 3h và vòi thứ hai trong 4h thì được 3/4 bể nước.hỏi mỗi vòi khác chảy thì trong bao lâu mới đầy bể?

 Gọi năng suất vòi 1 là x (x>0) (năng suất ở đây hiểu là sau 1 giờ thì vòi 1 chảy được 1 lượng nước nào đó). Gọi năng suất vòi 2 là y (y>0) => năng suất chung cả hai vòi là x+y. Do sau 4,8 giờ (4h48') thì 2 vòi chảy cùng đầy bể nên 1 giờ thì 2 vòi chảy được lượng nước là 1/4,8 bể = 5/24 bể => x+y =5/24 (1). Do mở vòi thứ nhất trong 3h và vòi thứ hai trong 4h thì được 3/4 bể nước nên ta có phương trình 3x+4y=3/4 (bể) (2), từ (1) và (2) => ta có hệ phương trình x+y =5/24 và 3x+4y=3/4. Giải hệ phương trình này ta được x=1/12 và y=1/8. => thời gian chảy đẩy bể của vòi 1 là 1/x = 12h, và tương tự thì vòi 2 là 8h

4 tháng 3 2021

24gio nhe

4 tháng 3 2021

Gọi thời gian vòi 1 chảy một mình với công suất bình thường đầy bể là x giờ thời gian vòi 2 chảy một mình với công suất bình thường đầy bể là y giờ 

ĐK: x, y > 12 

Trong 1 giờ, vòi 1 chẩy được 1/x bể 

Trong 1 giờ, vòi 2 chẩy được 1/y bể 

Trong 1 giờ, cả hai vòi chẩy được 1/12 bể 

Ta có phương trình: 1/x + 1/y = 1/12 (1) 

Trong 8 giờ cả hai vòi chẩy được 8/12 bể hay 2/3 bể còn lại là 1/3 bể vòi 2 chẩy trong 3,5 giờ với năng suất là 2/y ta có phương trình:

3,5 . 2/y = 1/3 hay 7/y = 1/3 (2) Từ (1) và (2)

ta có hệ phương trình: {1/x + 1/y = 1/12 (1) {7/y = 1/3 (2)

 Giải HPT này ta tìm được: x = 28 (tmđk) y = 21 (tmđk) 

Vậy thời gian vòi 1 chảy một mình với công suất bình thường đầy bể là 28 giờ thời gian vòi 2 chảy một mình với công suất bình thường đầy bể là 21 giờ 

25 tháng 4 2018

Giống câu hỏi của mình :))

25 tháng 4 2018

Giống câu hỏi của mình 

26 tháng 1 2022

Gọi thời gian vòi 1 chảy một mình đầy bể là x (h) 

thời gian vòi 2 chảy một mình đầy bể là y(h) 

ĐK : x > 6 ; y > 6

Ta có 1 giờ vòi 1 chảy được \(\dfrac{1}{x}\) (bể)

1 giờ vòi 2 chảy được \(\dfrac{1}{y}\)(bể)

1 giờ 2 vòi chảy được \(\dfrac{1}{6}\left(bể\right)\)

=> PT : \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\)(1)

mà vòi 1 chảy trong 2 giờ rồi khóa ; vòi 2 chảy tiếp 3 giờ được 40% bể

=> PT \(\dfrac{2}{x}+\dfrac{3}{y}=\dfrac{2}{5}\)(2) 

Từ (1) (2) => HPT : \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\\\dfrac{2}{x}+\dfrac{3}{y}=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{2}{y}=\dfrac{1}{3}\\\dfrac{2}{x}+\dfrac{3}{y}=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\\\dfrac{1}{y}=\dfrac{1}{15}\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=10\\y=15\end{matrix}\right.\)(tm)

Vậy...

Gọi x(giờ) là thời gian vòi 1 chảy một mình đầy bể

Gọi y(giờ) là thời gian vòi 2 chảy một mình đầy bể

(Điều kiện: x>5; y>5)

Trong 1 giờ, vòi 1 chảy được: \(\dfrac{1}{x}\)(bể)

Trong 1 giờ, vòi 2 chảy được: \(\dfrac{1}{y}\)(bể)

Trong 1 giờ, hai vòi chảy được: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{5}\)(1)

Vì khi vòi thứ nhất chảy trong 3 giờ và vòi thứ 2 chảy trong 2 giờ thì được 12/25 bể nên ta có phương trình:

\(\dfrac{3}{x}+\dfrac{2}{y}=\dfrac{12}{25}\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{5}\\\dfrac{3}{x}+\dfrac{2}{y}=\dfrac{12}{25}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{3}{y}=\dfrac{3}{5}\\\dfrac{3}{x}+\dfrac{2}{y}=\dfrac{12}{25}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=\dfrac{3}{25}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{25}{3}\\\dfrac{1}{x}=\dfrac{3}{5}-\dfrac{3}{25}=\dfrac{12}{25}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{25}{3}\\x=\dfrac{25}{12}\end{matrix}\right.\)(thỏa ĐK)

Vậy: Vòi 1 cần \(\dfrac{25}{12}h\) để chảy một mình đầy bể

Vòi 2 cần \(\dfrac{25}{3}h\) để chảy một mình đầy bể

17 tháng 8 2019

gọi công xuất vòi thứ nhất là x ( phần )

----------------------------  hai  là y ( phần ) 

(x,y > 0)

ta có :(x+y)12=1 =>x+y=1/12    (1)

(x+y)8+3,5.2.x=1=>15x+8y=1      (2)

từ (1) và (2) lập hệ phương trình:\(\hept{\begin{cases}x+y=\frac{1}{12}\\15x+8y=1\end{cases}}\Rightarrow\hept{\begin{cases}8x+8y=\frac{2}{3}\\15x+8y=1\end{cases}}\Rightarrow\hept{\begin{cases}7x=\frac{1}{3}\\x+y=\frac{1}{12}\end{cases}}\hept{\begin{cases}x=\frac{1}{21}\\y=\frac{1}{28}\end{cases}}\Rightarrow\)

=>vòi thứ nhất chảy đầy bể trong số giờ là:21 giờ

vòi thứ hai chảy đầy bể trong 28 giờ

vậy kết luận lấy nha

Gọi thời gian vòi 1 và vòi 2 chảy một mình đầy bể lần lượt là x,y

Theo đề, ta có: hệ phương trình:

\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{2}{3}\\\dfrac{1}{4x}+\dfrac{1}{3y}=\dfrac{1}{5}\end{matrix}\right.\)

Đặt 1/x=a; 1/y=b

Ta có hệ phương trình:

\(\left\{{}\begin{matrix}a+b=\dfrac{2}{3}\\\dfrac{1}{4}a+\dfrac{1}{3}b=\dfrac{1}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{4}{15}\\b=\dfrac{2}{5}\end{matrix}\right.\)

=>x=15/4; y=5/2