Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cm : 1) Xét t/giác ABC và t/giác AED
có AB = AD (gt)
góc BAC = góc DAE (đối đỉnh)
AC = AE (gt)
=> t/giác ABC = t/giác AED (c.g.c) (Đpcm)
2) Ta có: t/giác ABC = t/giác AED (Cmt)
=> góc E = góc B(hai góc tương ứng)
Xét t/giác AEK và t/giác ABH
có AB = AE (gt)
góc K = góc H = 900 (gt)
góc E = góc B (cmt)
=> t/giác AEK = t/giác ABH (cạnh huyền - góc nhọn)
=> BH = EK (hai cạnh tương ứng) (Đpcm)
3) Ta có: t/giác ABC = t/giác AED (cmt)
=> góc C = góc D (hai góc tương ứng)
Xét t/giác ADK và t/giác ACH
có AD = AC (gt)
góc D = góc C (Cmt)
góc AKD = góc AHC = 900 (gt)
=> t/giác ADK = t/giác ACH (cạnh huyền - góc nhọn)
=> góc HAC = góc DAK (hai góc tương ứng) (Đpcm)
a) Xét \(\Delta MAB\)và \(\Delta MDC\)có:
MA = MD (gt)
\(\widehat{BMA}=\widehat{CMD}\)(2 góc đối đỉnh)
MB = MC (gt)
\(\Rightarrow\Delta MAB=\Delta MDC\left(c-g-c\right)\)
\(\Rightarrow AB=DC\)(2 cạnh tương ứng)
\(\widehat{BAM}=\widehat{CDM}\)(2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
\(\Rightarrow AB//CD\)
b) Xét \(\Delta ACM\)và \(\Delta DBM\)có:
MA = MD (gt)
\(\widehat{AMC}=\widehat{BMD}\)(2 góc đối đỉnh)
MB = MC (gt)
\(\Rightarrow\Delta ACM=\Delta DBM\left(c-g-c\right)\)
\(\Rightarrow AC=DB\)(2 cạnh tương ứng)
Xét \(\Delta BAC\)và \(\Delta CDB\)có:
AB = DC (cmt)
AC = DB (cmt)
BC là cạnh chung
\(\Rightarrow\Delta BAC=\Delta CDB\left(c-c-c\right)\)
\(\Rightarrow\widehat{BAC}=\widehat{CDB}\)(2 góc tương ứng)
c) Bn tự lm nhá!! Phần này mk chưa nghĩ ra. Tốn chất xám lắm!!!!!
a) Bằng nhau trường hợp cạnh huyền góc nhọn ( góc A chung, AB=AC)
b) Ta có AE = AD ; AB=AC
=> AB - AE = AC - AD
=> BE = CD
Lại có góc ABD = góc ACE ( tam giác abd = tam giác ace)
Ta có tam giác HEB = HDC (gcg)
=> BH = CH (cạnh t/ứng)
=> tam giác bhc cân tại h
c)
c) ta có HD = HE
lại có trong tam giác BHE vuông tại E có HB > HE ( cạnh huyền lớn nhất)
hay HB > HD
d) Chứng minh H là trực tâm tam giác AHC nhé!
Vì \(AK⊥FH;FK=KH\) nên \(AK\)là đường trung trực của \(FH\)
\(\Rightarrow AF=AH\left(TC\right)\)(1)
Vì \(AI⊥HE;IH=IE\) nên \(AI\)là đường trung trực của \(HE\)
\(\Rightarrow AH=AE\)(2)
Từ (1);(2) \(\Rightarrow AF=AE\left(=AH\right)\) (đpcm)
P/S:mk vẽ hình hơi xấu thông cảm >:
a,Xét \(\Delta ADE\)và\(\Delta ACB\)có:
\(AB=AE\left(gt\right)\)
\(AC=AD\left(gt\right)\)
Góc \(EAD\)= Góc \(BAC\left(gt\right)\)
\(=>\Delta ADE=\Delta ACB\left(c-g-c\right)\)
\(=>ED=BC\)(2 cạnh tương ứng)
b,Xét \(\Delta\)vuông \(AKE\)và\(\Delta\)vuông \(AHB\)có:
\(AB=AE\left(gt\right)\)
Góc \(ABH\)\(=\)Góc \(AEK\)
\(=>\Delta AKE=\Delta AHB\left(ch-gn\right)\)
\(=>BH=EK\)(2 cạnh tương ứng)
c,Ta có : Góc \(EAK\)= Góc \(BAH\)(cm câu b) (1)
Lại có : Góc \(EAD\)= Góc \(BAC\)(gt) (2)
Do : +) Góc \(EAK\)+ Góc \(DAK\)= Góc \(EAD\)(3)
+) Góc \(BAH\)+ Góc \(CAH\)= Góc \(BAC\)(4)
Từ 1 ; 2 ; 3 và 4 \(=>\)Góc \(CAH\)= Góc \(DAK\)(ĐPCM)