K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2020

A B C H E K D

P/S:mk vẽ hình hơi xấu thông cảm >:

a,Xét \(\Delta ADE\)\(\Delta ACB\)có:

\(AB=AE\left(gt\right)\)

\(AC=AD\left(gt\right)\)

Góc \(EAD\)= Góc \(BAC\left(gt\right)\)

\(=>\Delta ADE=\Delta ACB\left(c-g-c\right)\)

\(=>ED=BC\)(2 cạnh tương ứng)

b,Xét \(\Delta\)vuông \(AKE\)\(\Delta\)vuông \(AHB\)có:

\(AB=AE\left(gt\right)\)

Góc \(ABH\)\(=\)Góc \(AEK\)

\(=>\Delta AKE=\Delta AHB\left(ch-gn\right)\)

\(=>BH=EK\)(2 cạnh tương ứng)

c,Ta có : Góc \(EAK\)= Góc \(BAH\)(cm câu b) (1)

Lại có : Góc \(EAD\)= Góc \(BAC\)(gt) (2)

Do : +) Góc \(EAK\)+ Góc \(DAK\)= Góc \(EAD\)(3)

       +) Góc \(BAH\)+ Góc \(CAH\)= Góc \(BAC\)(4)

Từ 1 ; 2 ; 3 và 4 \(=>\)Góc \(CAH\)= Góc \(DAK\)(ĐPCM)

14 tháng 1 2019

A D E H K

Cm : 1) Xét t/giác ABC và t/giác AED

có AB = AD (gt)

  góc BAC = góc DAE (đối đỉnh)

  AC = AE (gt)

=> t/giác ABC = t/giác AED (c.g.c) (Đpcm)

2) Ta có: t/giác ABC = t/giác AED (Cmt)

=> góc E = góc B(hai góc tương ứng)

Xét t/giác AEK và t/giác ABH

có AB = AE (gt)

  góc K = góc H = 900 (gt)

  góc E = góc B (cmt)

=> t/giác AEK = t/giác ABH (cạnh huyền - góc nhọn)

 => BH = EK (hai cạnh tương ứng) (Đpcm)

3) Ta có: t/giác ABC = t/giác AED (cmt)

=> góc C = góc D (hai góc tương ứng)

Xét t/giác ADK và t/giác ACH

có AD = AC (gt)

  góc D = góc C (Cmt)

  góc AKD = góc AHC = 900 (gt)

=> t/giác ADK = t/giác ACH (cạnh huyền - góc nhọn)

=> góc HAC = góc DAK (hai góc tương ứng) (Đpcm)

a) Xét \(\Delta MAB\)và \(\Delta MDC\)có:

          MA = MD (gt)

          \(\widehat{BMA}=\widehat{CMD}\)(2 góc đối đỉnh)

          MB = MC (gt)

\(\Rightarrow\Delta MAB=\Delta MDC\left(c-g-c\right)\)

\(\Rightarrow AB=DC\)(2 cạnh tương ứng)

     \(\widehat{BAM}=\widehat{CDM}\)(2 góc tương ứng)

Mà 2 góc này ở vị trí so le trong

\(\Rightarrow AB//CD\)

b) Xét \(\Delta ACM\)và \(\Delta DBM\)có:

          MA = MD (gt)

         \(\widehat{AMC}=\widehat{BMD}\)(2 góc đối đỉnh)

         MB = MC (gt)

\(\Rightarrow\Delta ACM=\Delta DBM\left(c-g-c\right)\)

\(\Rightarrow AC=DB\)(2 cạnh tương ứng)

Xét \(\Delta BAC\)và \(\Delta CDB\)có:

      AB = DC (cmt)

     AC = DB (cmt)

     BC là cạnh chung

\(\Rightarrow\Delta BAC=\Delta CDB\left(c-c-c\right)\)

\(\Rightarrow\widehat{BAC}=\widehat{CDB}\)(2 góc tương ứng)

c) Bn tự lm nhá!! Phần này mk chưa nghĩ ra. Tốn chất xám lắm!!!!!

26 tháng 4 2016

GIÚP MÌNH VỚI MỌI NGƯỜI ƠI. GIẢI CHI TIẾT HỘ MÌNH NHÉ! CẢM ƠN NHIỀU.

10 tháng 5 2016

a) Bằng nhau trường hợp cạnh huyền góc nhọn ( góc A chung, AB=AC)

b) Ta có AE = AD ; AB=AC

=> AB - AE = AC - AD

=> BE = CD

Lại có góc ABD = góc ACE ( tam giác abd = tam giác ace)

Ta có tam giác HEB = HDC (gcg)

=> BH = CH (cạnh t/ứng)

=> tam giác bhc cân tại h

c) 

10 tháng 5 2016

c) ta có HD = HE

lại có trong tam giác BHE vuông tại  E có HB > HE ( cạnh huyền lớn nhất)

hay HB > HD

d) Chứng minh H là trực tâm tam giác AHC nhé!

12 tháng 8 2017

A B C H I K E F

Vì \(AK⊥FH;FK=KH\) nên \(AK\)là đường trung trực của \(FH\)

\(\Rightarrow AF=AH\left(TC\right)\)(1)

Vì \(AI⊥HE;IH=IE\) nên \(AI\)là đường trung trực của \(HE\)

\(\Rightarrow AH=AE\)(2)

Từ (1);(2) \(\Rightarrow AF=AE\left(=AH\right)\) (đpcm)

12 tháng 11 2017

Bạn Đunh Đức Hùng làm đúng đó