Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Gọi x(km) là độ dài quãng đường AB(Điều kiện: x>0)
Thời gian dự định của ô tô để đi hết quãng đường AB là: \(\dfrac{x}{50}\left(h\right)\)
Thời gian thực tế của ô tô để đi hết quãng đường AB là:
\(2+\dfrac{1}{4}+\dfrac{x-112.5}{55}=\dfrac{x-112.5}{55}+\dfrac{9}{4}\)
Do đó, ta có phương trình:
\(\dfrac{x-112.5}{55}+\dfrac{9}{4}=\dfrac{x}{50}\)
\(\Leftrightarrow\dfrac{20\left(x-112.5\right)}{1100}+\dfrac{2475}{1100}=\dfrac{22x}{1100}\)
\(\Leftrightarrow20x-2250+2475-22x=0\)
\(\Leftrightarrow-2x+225=0\)
\(\Leftrightarrow x=\dfrac{225}{2}\left(nhận\right)\)
Vậy: \(AB=\dfrac{225}{2}km\)
Đổi 30 phút = 1/2 giờ, vận tốc lúc về là 40 m/h
Gọi độ dãi quãng đường AB là x (km) với x>0
Thời gian người đó đi từ A đến B là: \(\dfrac{x}{50}\) giờ
Thời gian người đó đi từ B về A là: \(\dfrac{x}{40}\) giờ
Do tổng thời gian cả đi lẫn về (tính cả thời gian nghỉ) là 5 giờ nên ta có pt:
\(\dfrac{x}{40}+\dfrac{x}{50}+\dfrac{1}{2}=5\)
\(\Rightarrow\dfrac{9}{200}x=\dfrac{9}{2}\)
\(\Rightarrow x=100\left(km\right)\)
Gọi độ dài quãng đường AB là x ( km ) ( x> 0 )
Thời gian cả đi và về không tính thời gian nghỉ là 4,5 giờ
Thời gian đi từ A -B là \(\dfrac{x}{15}\left(h\right)\)
Thời gian về từ B - A là \(\dfrac{x}{30}\left(h\right)\)
Vì thời gian cả đi lẫn về ( ko tính thời gian nghỉ ) là 4,5 giờ , ta có PT
\(\dfrac{x}{15}+\dfrac{x}{30}=4,5\\ \Leftrightarrow\dfrac{2x}{30}+\dfrac{x}{30}=\dfrac{135}{30}\\ \Leftrightarrow2x+x=135\\ \Leftrightarrow3x=135\\ \Leftrightarrow x=45\left(km\right)\)
Gọi quãng đường AB là x
Thời gian đi xe đạp là \(\dfrac{x}{15}\)
Thời gian đi xe máy là \(\dfrac{x}{30}\)
Thời gian đi và về là: 5,75-1,25=4,5
Theo đề bài ta có:
\(\dfrac{x}{15}+\dfrac{x}{30}=4,5\)
\(\Leftrightarrow\dfrac{2x+x}{30}=\dfrac{135}{30}\)
\(\Leftrightarrow3x=135\)
\(\Leftrightarrow x=45\left(km\right)\left(tm\right)\)