Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có AD/AB=AE/AC
nên DE//BC
b: Xét ΔABE và ΔACD có
AB=AC
góc A chung
AE=AD
=>ΔABE=ΔACD
c: Xét ΔIDB và ΔIEC có
góc IDB=góc IEC
DB=EC
góc IBD=góc ICE
=>ΔIDB=ΔIEC
d: Xét ΔABI và ΔACI có
AB=AC
BI=CI
AI chung
=>ΔABI=ΔACI
=>góc BAI=góc CAI
=>AI là phân giác của góc BAC
a) ta có tam giác abc là tam giác cân
=> AD=AC
MÀ BD=CE (1)
=>AD=AE(2)
Từ 1 và 2 suy ra DE là đường TB
=> DE=1/2BC
=> DE//BC (đccm)
a) Xét \(\Delta ABE\) và \(\Delta ACD\)
có: + AE=AD(gt)
+A: là góc chung
+AB=AC(do \(\Delta ABC\) cân tại A)
Vậy \(\Delta ABE\)=\(\Delta ACD\) (c.g.c)
=> BE=CD( 2 cạnh tương ứng)
b) Vì \(\Delta ABE\) =\(\Delta ACD\) (cmt)
nên: góc ABE=góc ACD( 2 góc tương ứng)
c) .\(\Delta KBC\) cân tại K
. Ta có: góc B = \(B_1+B_2\)
C=\(C_1=C_2\)
B=C(gt);\(B_1=C_1\) (cmt)
=> \(B_2=C_2\)
Do đó \(\Delta KBC\) cân tại K
a ) Tam giác ABC cân tại A => AB = AC và \(\widehat{ABC}=\widehat{ACB}\)
=> \(\widehat{B}=\frac{180^o-\widehat{A}}{2}\) ( 1 )
Ta có : AB = AD + BD
AC = AE + CE
Mà AB = AC , BD = CE
=> AD = AE
=> Tam giác ADE cân tại A
=> \(\widehat{ADE}=\frac{180^o-\widehat{A}}{2}\) ( 2 )
Từ ( 1 ) và ( 2 ) => \(\widehat{B}=\widehat{ADE}\)
Mà 2 góc này ở vị trí đồng vị
=> DE // BC
b ) Xét \(\Delta ABE\)và \(\Delta ACD\)có :
AB = AC ( do tam giác ABC cân tại A )
\(\widehat{A}\) là góc chung
AD = AE ( do tam giác ADE cân tại A )
=> \(\Delta ABE=\Delta ACD\)( c.g.c )
c ) Xét \(\Delta DBC\)và \(\Delta ECB\)có :
BD = CE ( gt )
\(\widehat{DBC}=\widehat{ECB}\)( do tam giác ABC cân tại A )
BC là cạnh chung
=> \(\Delta DBC=\Delta ECB\)( c.g.c )
=> \(\widehat{DCB}=\widehat{EBC}\)
=> Tam giác IBC cân tại I
=> IB = IC
Xét \(\Delta AIB\)và \(\Delta AIC\)có :
AI là cạnh chung
AB = AC ( do tam giác ABC cân tại A )
IB = IC ( cmt )
=> \(\Delta AIB=\Delta AIC\)( c.c.c)
=> \(\widehat{BAI}=\widehat{CAI}\)
=> AI là tia p/g của góc A