K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2017

1. So sánh

a) \(25^{50}\)\(2^{300}\)

\(25^{50}=25^{1.50}=\left(25^1\right)^{50}=25^{50}\)

\(2^{300}=2^{6.50}=\left(2^6\right)^{50}=64^{50}\)

\(25< 64\) nên \(25^{50}< 64^{50}\)

Vậy \(25^{50}< 2^{300}\)

b) \(625^{15}\)\(12^{45}\)

\(625^{15}=625^{1.15}=\left(625^1\right)^{15}=625^{15}\)

\(12^{45}=12^{3.15}=\left(12^3\right)^{15}=1728^{15}\)

\(625< 1728\) nên \(625^{15}< 1728^{15}\)

Vậy \(625^{15}< 12^{45}\)

5 tháng 8 2017

1.So sánh

a)\(25^{50}\)\(2^{300}\)

Ta có : \(2^{300}=\left(2^6\right)^{50}=64^{50}\)

\(25^{50}< 64^{50}\) nên \(25^{50}< 2^{300}\)

b)\(625^{15}\)\(12^{45}\)

Ta có : \(12^{45}=\left(12^3\right)^{15}=1728^{15}\)

\(625^{15}< 1728^{15}\) nên \(625^{15}< 12^{45}\)

8 tháng 7 2019

mong các bạn giúp đỡ mình nhé! Mình đang cần gấp!

vui

7 tháng 10 2019

a, \(\frac{-5}{12}+\frac{4}{37}+\frac{17}{12}-\frac{41}{37}\)

\(=\left(-\frac{5}{12}+\frac{17}{12}\right)+\left[\frac{4}{37}+\left(-\frac{41}{37}\right)\right]\)

\(=1+\left(-1\right)\)

\(=-1\)

b, \(\frac{1}{2}+\left(-\frac{3}{5}\right):\left(-1\frac{1}{2}\right)-\left|-\frac{2}{5}\right|\)

\(=\frac{1}{2}+\left(-\frac{3}{5}\right):\left(-\frac{3}{2}\right)-\frac{2}{5}\)

\(=\frac{1}{2}+\frac{2}{5}-\frac{2}{5}\)

\(=\frac{1}{2}\)

Mấy bài còn lại tương tự bn tự làm nha tính số mũ ra xong thực hiện, lấy thừa số chung mà nhân ( H mik bận đi hc thêm rồi)

22 tháng 6 2016

\(a,\left(\frac{3}{8}+-\frac{3}{4}+\frac{7}{12}\right):\frac{5}{6}+\frac{1}{2}\)

   =  \(\left(-\frac{3}{8}+\frac{7}{12}\right):\frac{5}{6}+\frac{1}{2}\)

    = \(\frac{5}{24}:\frac{5}{6}+\frac{1}{2}\)

     = \(\frac{1}{4}+\frac{1}{2}\)

      =  \(\frac{3}{4}\)

b)\(-\frac{7}{3}.\frac{5}{9}+\frac{4}{9}.\left(-\frac{3}{7}\right)+\frac{17}{7}\)

    =\(-\frac{35}{27}+\left(-\frac{4}{21}\right)+\frac{17}{7}\)

   = \(-\frac{35}{27}+\frac{47}{21}\)

   =        \(\frac{178}{189}\)

c) \(\frac{117}{13}-\left(\frac{2}{5}+\frac{57}{13}\right)\)

  = \(\frac{117}{13}-\frac{311}{65}\)

 =       \(\frac{274}{65}\)

d) \(\frac{2}{3}-0,25:\frac{3}{4}+\frac{5}{8}.4\)

\(\frac{2}{3}-\frac{1}{4}:\frac{3}{4}+\frac{5}{8}.4\)

\(\frac{2}{3}-\frac{1}{3}+\frac{5}{2}\)

=     \(\frac{1}{3}+\frac{5}{2}\)

=         \(\frac{17}{6}\)

26 tháng 6 2018

\(a,A=2^0+2^1+2^2+....+\)\(2^{2010}\)

\(\Rightarrow2A=2^1+2^2+2^3+....+2^{2011}\)

 \(2A-A=\left(2^1+2^2+2^3+...+2^{2011}\right)-\left(2^0+2^1+2^2+...+2^{2010}\right)\)

  \(A=2^{2011}-2^0\)

\(A=2^{2011}-1\)

\(b,B=1+3+3^2+...+3^{100}\)

\(\Rightarrow3B=3+3^2+3^3+...+3^{101}\)

\(3B-B=\left(3+3^2+3^3+...+3^{101}\right)-\left(1+3+3^2+...+3^{100}\right)\)

\(2B=3^{101}-1\)

\(\Rightarrow B=\frac{3^{101}-1}{2}\)

\(c,C=4+4^2+4^3+...+4^n\)

\(\Rightarrow4C=4^2+4^3+4^4+...+4^{n+1}\)

\(4C-C=\left(4^2+4^3+4^4+...+4^{n+1}\right)-\left(4+4^2+4^3+...+4^n\right)\)

\(3C=4^{n+1}-4\)

\(\Rightarrow C=\frac{4^{n+1}-4}{3}\)

\(d,D=1+5+5^2+...+5^{2000}\)

\(\Rightarrow5D=5+5^2+5^3+...+5^{2001}\)

\(5D-D=\left(5+5^2+5^3+...+5^{2001}\right)-\left(1+5+5^2+...+5^{2000}\right)\)

\(4D=5^{2001}-1\)

\(\Rightarrow D=\frac{5^{2001}-1}{4}\)

21 tháng 3 2021

b)

B=1+3+3^2+3^3+..+3^100

=> 3B = 3 + 3^2 + 3^3 + ...+ 3^101

=> 3B - B = ( 3 + 3^2 + 3^3 + ...+ 3^101) - (1+3+3^2+3^3+..+3^100)

=> 2B = 3^101 - 1

=> B =( 3^101 - 1) / 2