Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xét n(n+1)(4n+1)
Có (nn+n1)(4n+1)
(2n+n)(4n+1)=3n(4n+1)
Mà 3 nhân với số nào cũng chia hết cho 3=>3n(4n+1)chia hết cho 3
xét3n(4n+1)
có 3n*4n+3n
=>n(3+3)4n
=>n6*4n=24n chia hết cho 2
b) Giar sử gọi 3 số tự nhiên liên tiếp là: a, a+1,a+2.
Theo đề bài ta có :
A = a(a + 1) (a + 2) + 6
Ta có 6 = 3x2 mà ( 3,2) = 1
A + 2 vì trong A số tự nhiên liên tiếp có một số chia hết cho 2
A + 3 vì trong A số tự nhiên liên tiếp có một số chia hết cho 3
Vậy tích của 3 STN liên tiếp chia hết cho 6.
số chia hết cho 2 là số chẵn
ta có : 0 ; 2 ;4 ;.................498
số số hạng là :(498 - 0):2+1=250
ta có:201;204;............498
SSH là :(498-201):3+1=100
ta có : 105 ;110;.............995
SSH là :(995-105):5+1=179
K nha
Các số tự nhiên nhỏ hơn 500 chia hết cho 2 là:
0;2;4;...;498.
Có tất cả:
(498-0):2+1=250 (số tự nhiên nhỏ hơn 500 chia hết cho 2)
Các số tự nhiên chia hết cho 3 lớn hơn 200 nhỏ hơn 500 là:
201;204;...;498.
Có tất cả:
(498 - 201) : 3 + 1 = 100 ( số tự nhiên chia hết cho 3 lớn hơn 200 nhỏ hơn 500 )
Các số tự nhiên chia hết cho 5 lớn hơn 100 nhỏ hơn 1000 là:
105;110;115;...;995.
Có tất cả:
(995 - 105) : 5 + 1 = 179 (số tự nhiên chia hết cho 5 lớn hơn 100 nhỏ hơn 1000)
1.
\(x\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)\)
Tích 5 số tự nhiên liên tiếp sẽ chia hết cho 3,5
Ngoài ra trong 5 số này sẽ luôn tồn tại 2 ít nhất 2 số chẵn, trong đó có 1 số chia hết cho 4
Do đó tích 5 số tự nhiên liên tiếp luôn chia hết cho 2*3*4*5=120
2.(Tương tự)
3.Trong 3 số chẵn liên tiếp luôn tồn tại ít nhất 1 số chia hết cho 4 nên nó chia hết cho 2*2*4=16
Lại có trong 3 số chẵn liên tiếp luôn tồn tại 1 số chia hết cho 3(cái này viết số đó dưới dang \(x\left(x+2\right)\left(x+4\right)\)rồi xét 3 trường hợp với x=3k, x=3k+1 và x=3k+2)
Do đó tích 3 số chẵn liên tiếp chia hết cho 3*16=48.
4.
Trong 4 số chẵn liên tiếp luôn tồ tạ 1 số chia hết cho 4 và 1 số chia hết cho 8, dó đó tích này chia hết cho 2*2*4*8=128
Lại có trong 4 số chẵn liên tiếp tồn tại 1 số chia hết cho 3( làm như phần trên)
Do đó tích chia hết cho 3*128=384
5.
\(m^3-m=m\left(m-1\right)\left(m+1\right)\)
Đây là tích của 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 3
Nên \(m^3-m\)chia hết cho 2*3=6
Trong hai số liên tiếp phải có 1 số chẵn và một số lẻ mà số chẵn thì chia hết cho 2.
tick nha
Câu 1
Nếu an chia hết cho 25 => a chia hết cho25 => a2 chia hết cho 25
Do a2 chia hết cho 5 và 150 cũng xhia hết cho 25 nên a2+150 chia hết cho 25
Câu 3
Đặt p=2k hoặc =2k+1
.) Nếu p=2k thì p chia hết cho 2 ( loại)
=> p chỉ có thể bằng 2k+1
=>p+7=2k+1+7=2k+8=2(k+4) chia hết cho2
Vậy p+7 là hợp số
Câu 2 mk chưa hiểu đề lắm
tick nha
cách 1:
ta sẽ chứng minh :
*tích của 2 số chẵn liên tiếp thì chia hết cho 8 : gọi số chẵn thứ nhất là 2n ( n là số nguyên dương) thì số chẵn liền theo là 2n + 2 , tích của chúng là 2n.(2n + 2) = 2n.2(n +1) = 4.n(n + 1), Trong tích n(n+1) có 1 số chia hết cho 2 vậy tích của 2 số chẵn liên tiếp thì chia hết cho 4.2 = 8 (1)
*trong tích n(n+1)(n+2)(n+3)(n+4) nếu n chia hết 5 thì tích chia hết 5, nếu n chia 5 dư 1 thì (n + 4) chia hết 5, nếu n chia 5 dư 2 thì (n + 3) chia hết 5 ,nếu n chia 5 dư 3 thì (n + 2) chia hết 5, nếu n chia 5 dư 4 thì (n + 1) chia hết 5 => tích n(n+1)(n+2)(n+3)(n+4) chia hết 5 (2)
* trong tích n(n+1)(n+2) nếu n chia hết 3 thì tích chia hết 3, nếu n chia 3 dư 1 thì (n + 2) chia hết 3, nếu n chia 3 dư 2 thì (n + 1) chia hết 3 => n(n+1)(n+2) chia hết 3 => n(n+1)(n+2)(n+3)(n+4) chia hết cho 3 (3)
*ƯCLN(8;5;3) = 1 (4)
Từ (1), (2), (3) và (4) => n(n+1)(n+2)(n+3)(n+4) chia hết cho 8.5.3 = 120
cách 2: quy nạp toán học P(n) = n(n+1)(n+2)(n+3)(n+4)
với n = 1 ta có n(n+1)(n+2)(n+3)(n+4) = 1.2.3.4.5 =120 chia hết cho 120 dúng
giả sử đúng với n = k nghĩa là k(k+1)(k+2)(k+3)(k+4) chia hết cho 120
ta sẽ chứng minh đúng với n = k + 1 thật vậy với n = k + 1 ta có
P(k+1) = (k+1)(k+2)(k+3)(k+4)(k+5) = k(k+1)(k+2)(k+3)(k+4) + (k+1)(k+2)(k+3)(k+4)5
k(k+1)(k+2)(k+3)(k+4) chia hết cho 5 vì với n = k đúng
tích (k+1)(k+2)(k+3)(k+4) chứa 2 số chẵn liên tiếp nên chia hết 8 và trong tích có 3 số tự nhiên liên tiếp nên chia hết 3, tích có thừa số 5 vậy tích chia hết 8.3.5=120
=> P(k+1) = (k+1)(k+2)(k+3)(k+4)(k+5) chia hết cho 120 (đpcm)
5 số liên tiếp có
1 số chia hết cho 5
1 số chia hết cho 4
3 số còn lại
(có 1 số chia hết cho 2& 1 số chia hết cho 3 hoặc có 1 số chia hết cho 6)
4.5.6=120=> cần cm