Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét \(\left(\dfrac{a+b}{2}\right)^2-\dfrac{a^2+b^2}{2}=\)\(\dfrac{a^2+2ab+b^2-2\left(a^2+b^2\right)}{4}\)\(=\dfrac{-a^2+2ab-b^2}{4}\)\(=\dfrac{-\left(a-b\right)^2}{4}\le0\forall a;b\)
\(\Rightarrow\left(\dfrac{a+b}{2}\right)^2\le\dfrac{a^2+b^2}{2}\) (bạn ghi sai đề?)
Dấu = xảy ra <=> a=b
b) \(\left(a^{10}+b^{10}\right)\left(a^2+b^2\right)-\left(a^8+b^8\right)\left(a^4+b^4\right)\)
\(=a^{12}+a^{10}b^2+a^2b^{10}+b^{12}-\left(a^{12}+a^8b^4+a^4b^8+b^{12}\right)\)
\(=a^2b^2\left(a^8+b^8-a^6b^2-a^2b^6\right)\)
\(=a^2b^2\left(a^2-b^2\right)\left(a^6-b^6\right)=a^2b^2\left(a^2-b^2\right)^2\left(a^4+a^2b^2+b^4\right)\ge0\) với mọi a,b
=> \(\left(a^{10}+b^{10}\right)\left(a^2+b^2\right)\ge\left(a^8+b^8\right)\left(a^4+b^4\right)\)
Dấu = xảy ra <=>a=b
\(a^2+b^2=\left(a+b\right)^2-2ab=\left(-3\right)^2-2\cdot\left(-2\right)=9+4=13\)
\(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)
\(=\left(-3\right)^3-3\cdot\left(-2\right)\cdot\left(-3\right)\)
\(=-27-18=-45\)
Thực hiện phép nhân đa thức với đa thức ở vế trái.
=> VT = VP (đpcm)
\(a^2+b^2=a^3+b^3=a^4+b^4\)
\(\Rightarrow\left(a^3+b^3\right)^2=\left(a^2+b^2\right)\left(a^4+b^4\right)\)
\(\Rightarrow a^6+b^6+2a^3b^3=a^6+b^6+a^2b^4+a^4b^2\)
\(\Rightarrow2a^3b^3=a^2b^2\left(a^2+b^2\right)\)
\(\Rightarrow2ab=a^2+b^2\)
\(\Rightarrow\left(a-b\right)^2=0\)
\(\Rightarrow a=b\)
Thế vào \(a^2+b^2=a^3+b^3\)
\(\Rightarrow a^2+a^2=a^3+a^3\Rightarrow2a^3=2a^2\Rightarrow a=b=1\)
\(\Rightarrow a+b=2\)
1: Ta có: \(a^2+b^2+c^2\)
\(=\left(a+b+c\right)^2-2\cdot\left(ab+bc+ca\right)\)
\(=5^2-2\cdot174=-323\)
\(=\dfrac{a+b+a-b}{a^2-b^2}+\dfrac{2a}{a^2+b^2}+\dfrac{4a^3}{a^4+b^4}+\dfrac{8a^7}{a^8+b^8}\)
\(=\dfrac{2a^3+2a^2b^2+2a^3-2ab^2}{a^4-b^4}+\dfrac{4a^3}{a^4+b^4}+\dfrac{8a^7}{a^8+b^8}\)
\(=\dfrac{4a^7+4a^3b^4+4a^7-4a^3b^4}{a^8-b^8}+\dfrac{8a^7}{a^8+b^8}\)
\(=\dfrac{8a^7}{a^8-b^8}+\dfrac{8a^7}{a^8+b^8}\)
\(=\dfrac{8a^{15}+8a^7b^8+8a^{15}-8a^7b^8}{a^{16}-b^{16}}=\dfrac{16a^{15}}{a^{16}-b^{16}}\)