K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 4 2017

Câu 1 :
 A = (2012+2) . [ ( 2012-2) : 3+1 ] : 2 = 2014 . 671 : 2 = 675697
 B = \(\frac{1}{2}\).  \(\frac{2}{3}\).  \(\frac{3}{4}\)+...+  \(\frac{2010}{2011}\).  \(\frac{2011}{2012}\)\(\frac{1.2.3.....2010.2011}{2.3.4.....2011.2012}\)=  \(\frac{1}{2012}\)
Câu 2 :
 a) \(2x.\left(3y-2\right)+\left(3y-2\right)=-55\)
=> \(\left(3y-2\right).\left(2x+1\right)=-55\)
=>  \(3y-2;2x+1\in\: UC\left(-55\right)\)
=>  \(3y-2;2x+1=\left\{1;-1;5;-5;11;-11;55;-55\right\}\)
- Vậy ta có bảng 

BẢNG TÌM x;y
\(2x+1\) 1-1 5-511-1155-55
\(x\) 0-1 2-35-627-28
\(3y-2\)-5555-1111-55-11
\(3y\)-5357-913-3713
\(y\)\(\frac{-53}{3}\)(loại)19(chọn)-3(chọn)\(\frac{13}{3}\)(loại)-1(chọn)\(\frac{7}{3}\)(loại)\(\frac{1}{3}\)(loại)1(chọn)


\(\Leftrightarrow\)Những cặp (x;y) tìm được là : 
(-1;19)  ;   (2;-3)   ;    (5;-1)    ;    (-28;1)
b) Ta đặt vế đó là A
Ta xét A :   \(\frac{1}{4^2}\)<  \(\frac{1}{2.4}\)
                  \(\frac{1}{6^2}\)<  \(\frac{1}{4.6}\)
                  \(\frac{1}{8^2}\)<  \(\frac{1}{6.8}\)
                          ...
                 \(\frac{1}{\left(2n\right)^2}\)<  \(\frac{1}{\left(2n-2\right).2n}\)

  \(\Leftrightarrow\)A < \(\frac{1}{2.4}\)+  \(\frac{1}{4.6}\)+...+  \(\frac{1}{\left(2n-2\right).2n}\)
  \(\Leftrightarrow\)A < \(\frac{1}{2}\). ( \(\frac{2}{2.4}\)+  \(\frac{2}{4.6}\)+...+  \(\frac{2}{\left(2n-2\right).2n}\))
  \(\Leftrightarrow\)A < \(\frac{1}{2}\). ( \(\frac{1}{2}\)-  \(\frac{1}{4}\)+  \(\frac{1}{4}\)-  \(\frac{1}{6}\)+...+  \(\frac{1}{2n-2}\)-  \(\frac{1}{2n}\))
  \(\Leftrightarrow\)A < \(\frac{1}{2}\). ( \(\frac{1}{2}\)-  \(\frac{1}{2n}\)) = \(\frac{1}{2}\).  \(\frac{1}{2}\)-  \(\frac{1}{2}\).  \(\frac{1}{2n}\)
  \(\Leftrightarrow\)A < \(\frac{1}{4}\)-  \(\frac{1}{4n}\)<  \(\frac{1}{4}\) ( Vì n \(\in\)N )
  \(\Leftrightarrow\)A <  \(\frac{1}{4}\)( đpcm ) .

29 tháng 4 2017

Bạn Phùng Quang Thịnh làm đúng hết rồi 

3 tháng 10 2016

\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{100}\right)\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{99}{100}\)

\(=\frac{1}{100}\)

3 tháng 10 2016

\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{100}\right)\)

Đặt : \(A=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{100}\right)\)

\(A=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{99}{100}\)

\(A=\frac{1.2.3.4.....99}{2.3.4.5.....100}\)

\(A=\frac{1}{100}\)

Vậy : \(A=\frac{1}{100}\)

14 tháng 8 2020

\(A=\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)\left(\frac{1}{4}+1\right)...\left(\frac{1}{99}+1\right)\)

\(=\left(\frac{1}{2}+\frac{2}{2}\right)\left(\frac{1}{3}+\frac{3}{3}\right)\left(\frac{1}{4}+\frac{4}{4}\right)...\left(\frac{1}{99}+\frac{99}{99}\right)\)

\(=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{100}{99}=\frac{100}{2}=50\)

Vậy \(A=50\).

\(A=\left(\frac{1}{2}+1\right)\left(\frac{1}{3}+1\right)\left(\frac{1}{4}+1\right)...\left(\frac{1}{99}+1\right)\)

\(A=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}.....\frac{100}{99}=\frac{3.4.5.....100}{2.3.4.....99}\)

\(\Leftrightarrow A=\frac{100}{2}=50\)

15 tháng 8 2019

\(A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\cdot\cdot\cdot\left(1-\frac{1}{n^2}\right)\)

\(\Rightarrow A=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\cdot\cdot\cdot\left(1-\frac{1}{n^2}\right)\)

\(\Rightarrow A=\frac{3}{4}\cdot\frac{8}{9}\cdot\cdot\cdot\frac{n^2-1}{n^2}\)

\(\Rightarrow A=\frac{1\cdot3}{2\cdot2}\cdot\frac{2\cdot4}{3\cdot3}\cdot\cdot\cdot\frac{\left(n-1\right)\left(n+1\right)}{n\cdot n}\)

\(\Rightarrow A=\frac{\left(1\cdot3\right)\cdot\left(2\cdot4\right)\cdot\cdot\cdot\left[\left(n-1\right)\left(n+1\right)\right]}{\left(2\cdot2\right)\cdot\left(3\cdot3\right)\cdot\cdot\cdot\left(n\cdot n\right)}\)

\(\Rightarrow A=\frac{\left[1\cdot2\cdot\cdot\cdot\cdot\cdot\left(n-1\right)\right]\cdot\left[3\cdot4\cdot\cdot\cdot\cdot\cdot\left(n+1\right)\right]}{\left(2\cdot3\cdot\cdot\cdot\cdot\cdot n\right)\cdot\left(2\cdot3\cdot\cdot\cdot\cdot\cdot n\right)}\)

\(\Rightarrow A=\frac{1\cdot\left(n+1\right)}{n\cdot2}\)

\(\Rightarrow A=\frac{n+1}{2n}\)

15 tháng 8 2019

A=(1-1/2^2)(1-1/3^2).....(1-1/n^2)

A=1(1/2^2-1/3^2-...-1/n^2)

......

xin lỗi bạn nha mình phải tắt máy rồi bạn cố gắng suy nghĩ tiếp nha

23 tháng 5 2017

\(\left(1-\frac{1}{7}\right)\left(1-\frac{2}{7}\right)...\left(1-\frac{7}{7}\right)\left(1-1\frac{1}{7}\right)...\left(1-1\frac{3}{7}\right)\)

\(=\left(1-\frac{1}{7}\right)\left(1-\frac{2}{7}\right)...\left(1-1\frac{1}{7}\right)...\left(1-1\frac{3}{7}\right)\left(1-1\right)\)

\(=\left(1-\frac{1}{7}\right)\left(1-\frac{2}{7}\right)...\left(1-1\frac{3}{7}\right).0\)

\(=0\)

23 tháng 5 2017

Trong dãy nhất định có \(\left[1-\frac{7}{7}\right]=0\)nên tích dãy trên là 0

24 tháng 1 2018

\(B=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{98^2}-1\right)\left(\frac{1}{99^2}-1\right)\)

\(=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right).....\left(1-\frac{1}{98^2}\right)\left(1-\frac{1}{99^2}\right)\)

\(=\frac{3}{2^2}.\frac{8}{3^2}......\frac{9603}{98^2}.\frac{9800}{99^2}\)

\(=\frac{1.3}{2^2}.\frac{2.4}{3^2}.....\frac{97.99}{98^2}.\frac{98.100}{99^2}\)

\(=\frac{1.2.4...97.98}{2.3....98.99}.\frac{3.4...99.100}{2.3....98.99}\)

\(=\frac{1}{99}.\frac{100}{2}\)

\(=\frac{50}{99}\)

24 tháng 1 2018

bn viết sai 1 chỗ nhưng ko s ^^ tks nhoa 

7 tháng 5 2017

\(A=\frac{3}{2}.\frac{4}{3}....\frac{100}{99}=\frac{100}{2}=50\)

7 tháng 5 2017

\(A=\frac{3}{2}\times\frac{4}{3}\times\frac{5}{4}\times...\times\frac{99}{98}\times\frac{100}{99}\)

Vì phép nhân có thể rút gọn được

\(\Rightarrow A=\frac{100}{2}=50\)

Vậy A = 50

24 tháng 9 2017

\(\frac{\left(\frac{1}{2}\right)^2.2018-\left(\frac{1}{4}\right)^2.2017}{\frac{1}{4096}.\frac{1}{3}+2^{13}}\)

=

24 tháng 9 2017

\(\frac{\left(\frac{1}{2}\right)^2.2018-\left(\frac{1}{4}\right)^6.2017}{\frac{1}{4096}.\frac{1}{3}+2^{13}}\)\(\Leftrightarrow\frac{\left(\frac{1}{4}\right).2018-\left(\frac{1}{4096}\right).2017}{\frac{1}{4096}.\frac{1}{3}+2^{13}}\)

Lược bỏ các số giống nhau đi ta được :

\(\frac{\left(\frac{1}{4}\right).2018.2017}{\frac{1}{3}+2^{13}}\Leftrightarrow\frac{\left(\frac{1}{4}\right).2018.2017}{\frac{1}{3}.8192}\Leftrightarrow\frac{\frac{1}{4}.4070306}{\frac{8192}{3}}\)

\(=\frac{1017576,5}{\frac{8192}{3}}\)