K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2017

x2 + x + 1 = (x2 + x + 1/4) + 3/4 = (x + 1/2)2 + 3/4 

Dấu"=" xảy ra khi và chi khi: (x + 1/2)2 = 0   <=> x = -1/2

26 tháng 6 2017

để x^2+x+1 đật giá trị nhỏ nhất thì x^2+x+1<0

\(\Rightarrow\)x^2+x<0-1

\(\Rightarrow\)x(x+1)<0    vế pai là phân tích đa thức thah nhân tử

\(\Rightarrow\)x+1<0

\(\Rightarrow\)x< -1

17 tháng 5 2017

23 tháng 10 2019

a. + Với  m = − 1 2   phương trình (1) trở thành x 2 − 4 x = 0 ⇔ x = 0 x = 4 .

+ Vậy khi  m = − 1 2  phương trình có hai nghiệm x= 0 và x= 4.

b. + Phương trình có hai nghiệm dương phân biệt khi 

                            Δ = 2 m + 5 2 − 4 2 m + 1 > 0 x 1 + x 2 = 2 m + 5 > 0 x 1 . x 2 = 2 m + 1 > 0

+ Ta có  Δ = 2 m + 5 2 − 4 2 m + 1 = 4 m 2 + 12 m + 21 = 2 m + 3 2 + 12 > 0 , ∀ m ∈ R

+ Giải được điều kiện  m > − 1 2  (*).

+ Do P>0 nên P đạt nhỏ nhất khi P 2  nhỏ nhất.

+ Ta có P 2 = x 1 + x 2 − 2 x 1 x 2 = 2 m + 5 − 2 2 m + 1 = 2 m + 1 − 1 2 + 3 ≥ 3     ( ∀ m > − 1 2 ) ⇒ P ≥ 3    ( ∀ m > − 1 2 ) .

và P = 3  khi m= 0 (thoả mãn (*)).

+ Vậy giá trị nhỏ nhất  P = 3  khi m= 0.

7 tháng 4 2018

Phương trình x 2 + (4m + 1)x + 2(m – 4) = 0 có a = 1  0 và

∆ = ( 4 m + 1 ) 2 – 8 ( m – 4 ) = 16 m 2 + 33 > 0 ;   ∀ m

Nên phương trình luôn có hai nghiệm x 1 ;   x 2

Theo hệ thức Vi-ét ta có  x 1 + x 2 = − 4 m − 1 x 1 . x 2 = 2 n − 8

Xét

A = x 1 - x 2 2 = x 1 + x 2 2 - 4 x 1 x 2 = 16 m 2 + 33 ≥ 33

Dấu “=” xảy ra khi m = 0

Vậy m = 0 là giá trị cần tìm

Đáp án: B

4 tháng 5 2021

Ta có:

\(\Delta=\left(m+2\right)^2-4\left(m-1\right)=m^2+4m+4-4m+4=m^2+8>0\left(\forall m\right)\)

=> PT luôn có 2 nghiệm phân biệt với mọi GT của m

Theo hệ thức viet ta có: \(\hept{\begin{cases}x_1+x_2=-m-2\\x_1x_2=m-1\end{cases}}\)

Thay vào A ta được:

\(A=x_1^2+x_2^2-3x_1x_2\)

\(A=\left(x_1+x_2\right)^2-5x_1x_2\)

\(A=\left(-m-2\right)^2-5\left(m-1\right)\)

\(A=m^2+4m+4-5m+5=m^2-m+9\)

\(A=\left(m^2-m+\frac{1}{4}\right)+\frac{35}{4}\)

\(A=\left(m-\frac{1}{2}\right)^2+\frac{35}{4}\ge\frac{35}{4}\left(\forall m\right)\)

Dấu "=" xảy ra khi: \(m=\frac{1}{2}\)

Vậy \(Min_A=\frac{35}{4}\Leftrightarrow m=\frac{1}{2}\)

4 tháng 5 2021

Δ = b2 - 4ac = ( m + 2 )2 - 4( m - 1 ) = m2 + 4m + 4 - 4m + 4 = m2 + 8 ≥ 8 > 0 ∀ m

hay phương trình luôn có hai nghiệm phân biệt với mọi m

Theo hệ thức Viète ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-m-2\\x_1x_2=\frac{c}{a}=m-1\end{cases}}\)

Khi đó : A = x12 + x22 - 3x1x2 = ( x1 + x2 )2 - 5x1x2

= ( -m - 2 )2 - 5( m - 1 ) = m2 + 4m + 4 - 5m + 5

= m2 - m + 9 = ( m - 1/2 )2 + 35/4 ≥ 35/4 ∀ m

Dấu "=" xảy ra <=> m = 1/2. Vậy MinA = 35/4

20 tháng 1 2023

Áp dụng hệ thức vi ét:

\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=-m\\x_1.x_2=m-1\end{matrix}\right.\)

⇒ \(\left(x_1+x_2\right)^2-2x_1.x_2=m^2-2\left(m-1\right)\)

\(\Leftrightarrow x_1^2+x_2^2=\left(m-1\right)^2\)

\(Min\left(x_1^2+x_2^2=0\right)\Leftrightarrow m=1\)

Chọn A

23 tháng 5 2021

\(\Delta=4\left(m+1\right)^2-4\left(2m-3\right)=4m^2+16>0\forall m\)

=> pt luôn có hai nghiệm pb

Theo viet có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m-3\end{matrix}\right.\)

Có :\(P^2=\left(\dfrac{x_1+x_2}{x_1-x_2}\right)^2=\dfrac{4\left(m+1\right)^2}{\left(x_1+x_2\right)^2-4x_1x_2}\)

\(=\dfrac{4\left(m+1\right)^2}{4\left(m+1\right)^2-4\left(2m-3\right)}=\dfrac{4\left(m+1\right)^2}{4m^2+16}\)\(\ge0\)

\(\Rightarrow P\ge0\)

Dấu = xảy ra khi m=-1

30 tháng 7 2016

Đặt   \(A=\sqrt{x+8}+\sqrt{x-1}\)

Xét   \(A^2=\left|x+8\right|+2\sqrt{\left(x+8\right)\left(x-1\right)}+\left|x-1\right|\)

       \(\Leftrightarrow A^2=x+8+1-x+2\sqrt{\left(x+8\right)\left(x-1\right)}\)

        \(\Leftrightarrow A^2=9+2\sqrt{\left(x+8\right)\left(x-1\right)}\)

Ta có  \(A^2\ge9\)\(\Rightarrow\)min A = 3  \(\Leftrightarrow x=1\)

29 tháng 7 2016

nhỏ nhất là 9 khi x= -8 hoặc x=1

25 tháng 11 2019

b) Theo định lí Vi-et ta có:

x 1  + x 2 = m + 1 và x 1 . x 2  = m - 2

Do đó A =  x 1 2 + x 2 2 - 6 x 1 x 2  = x 1 + x 2 2 - 8 x 1 x 2

= m + 1 2 - 8(m – 2) = m 2  + 2m + 1 – 8m + 16

= m 2 - 6m + 17 = m - 3 2  + 8 ≥ 8

Vậy giá trị nhỏ nhất của A bẳng 8 khi m – 3 = 0 hay m = 3.