K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2016

a/a' + b'/b = 1 <=> ab + a'b' = a'b <=> abc + a'b'c = a'bc (1) (vì c # 0) 
b/b' + c'/c = 1 <=> bc + b'c' = b'c <=> a'bc + a'b'c' = a'b'c (2) (vì a' # 0) 
(1) + (2) => đpcm

AH
Akai Haruma
Giáo viên
5 tháng 7 2019

Lời giải:

Vì $a,b,c\in (0;1]$ nên $ab,bc,ac\in (0;1]$

Do đó: \((ab-1)(bc-1)(ca-1)\leq 0\)

\(\Leftrightarrow (ab^2c-ab-bc+1)(ca-1)\leq 0\)

\(\Leftrightarrow a^2b^2c^2-(ab^2c+a^2bc+abc^2)+ab+bc+ac-1\leq 0\)

\(\Leftrightarrow a^2b^2c^2+ab+bc+ac\leq ab^2c+a^2bc+abc^2+1\)

\(\Leftrightarrow \frac{a^2b^2c^2+ab+bc+ac}{abc}\leq \frac{ab^2c+a^2bc+abc^2+1}{abc}\)

\(\Leftrightarrow abc+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\leq a+b+c+\frac{1}{abc}\) (đpcm)

Dấu "=" xảy ra khi $a=b=c=1$

Bài 2 :

Ta có : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=2\)

\(\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\cdot\frac{a+b+c}{abc}=4\)

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\cdot1=4\)

( Do \(a+b+c=abc\) )

\(\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=2\) (đpcm)

P/s : Cho hỏi bài 1 có a,b,c > 0 không ?

Khuyến mãi thêm bài 1 :))

Áp dụng BĐT AM-GM ta có :

\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{b^2}\cdot\frac{b^2}{c^2}}=\frac{2a}{c}\) (1)

Tương tự ta có :

\(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{2b}{a}\)(2), \(\frac{c^2}{a^2}+\frac{a^2}{b^2}\ge\frac{2c}{b}\) (3)

Cộng các vế của BĐT (1) (2) và (3) và chia 2 ta có :

\(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{c}{b}+\frac{b}{a}+\frac{a}{c}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)

1 tháng 7 2017

Ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}a+b=0\\b+c=0\\c+a=0\end{cases}}\)

Với \(a+b=0\)

Thì \(\hept{\begin{cases}\frac{1}{a^{2005}}+\frac{1}{b^{2005}}+\frac{1}{c^{2005}}=\frac{1}{c^{2005}}\\\frac{1}{a^{2005}+b^{2005}+c^{2005}}=\frac{1}{c^{2005}}\end{cases}}\)

Tương tự cho 2 trường hợp còn lại ta có ĐPCM

21 tháng 7 2018

Ta có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow a^2-ab+b^2\ge ab\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\ge ab\left(a+b\right)\Leftrightarrow a^3+b^3\ge ab\left(a+b\right)\)

BĐT đầu đúng => \(a^3+b^3\ge ab\left(a+b\right)\)đúng. Dấu "=" xảy ra <=> a=b

Áp dụng vào bài toán: \(a^3+b^3+abc\ge ab\left(a+b\right)+abc=ab\left(a+b+c\right)\)

\(\Rightarrow\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b+c\right)}\)

Tương tự: \(\frac{1}{b^3+c^3+abc}\le\frac{1}{bc\left(a+b+c\right)};\frac{1}{c^3+a^3+abc}\le\frac{1}{ca\left(a+b+c\right)}\)

Cộng 3 cái trên lại: \(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}\)\(=\frac{c+a+b}{abc\left(a+b+c\right)}=\frac{1}{abc}.\)(đpcm)

Dấu "=" xảy ra <=> a=b=c.

21 tháng 7 2018

một cửa hàng có 1 bao đường nặng 42kg. Ngày thứ nhất bán 2/7 bao đường. Ngày thứ hai bán 3/5 số đường còn lại. Hỏi sau hai ngày bán cửa hàng còn lai bao nhiêu kg đường

giải hộ mk nha

23 tháng 3 2016

Ừ thì sai đề vô căn cứ đây!

Dễ dàng chứng minh bất đẳng thức phụ với  \(a,b>0\), và với chú ý rằng nghịch đảo hai vế và đổi chiều bất đẳng thức khi  \(a>b\) và  \(ab>0\)

Ta có:

\(a^3+b^3\ge ab\left(a+b\right)\)  \(\Leftrightarrow\)  \(a^3+b^3+abc\ge ab\left(a+b+c\right)\)  \(\Leftrightarrow\)  \(\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b+c\right)}\)  \(\left(1\right)\)

Hoàn toàn tương tự:

\(\frac{1}{b^3+c^3+abc}\le\frac{1}{bc\left(a+b+c\right)}\)  \(\left(2\right)\)  và  \(\frac{1}{c^3+a^3+abc}\le\frac{1}{ca\left(a+b+c\right)}\)  \(\left(3\right)\) 

Cộng từng vế \(\left(1\right);\)  \(\left(2\right)\)  và  ​\(\left(3\right)\), ta được:

\(\frac{1}{a^3+b^3+abc}+\frac{1}{b^3+c^3+abc}+\frac{1}{c^3+a^3+abc}\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}=\frac{a+b+c}{abc\left(a+b+c\right)}=\frac{1}{abc}\)

Dấu   \("="\)  xảy ra  \(\Leftrightarrow\)  \(a=b=c\)

23 tháng 3 2016

bạn xem lại dấu BĐT ?

bạn thử thế a=1 c=2 b=3 vào là bik ngay đề sai