K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2021

\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{3x^2+2}-\sqrt{4+x}}{x^2-1}=\lim\limits_{x\rightarrow1}\dfrac{\dfrac{3x^2-x-2}{\sqrt{3x^2+2}+\sqrt{4+x}}}{x^2-1}=\lim\limits_{x\rightarrow1}\dfrac{3x+2}{\left(x+1\right)\left(\sqrt{3x^2+2}+\sqrt{4+x}\right)}=\dfrac{5}{2.2\sqrt{5}}=\dfrac{\sqrt{5}}{4}\).

Từ đó a = 5; b = 4 nên a - b = 1.

NV
27 tháng 1 2021

\(\lim\limits_{x\rightarrow0}\dfrac{3x^2+2-\left(2-2x\right)}{x\left(\sqrt{3x^2+2}+\sqrt{2-2x}\right)}=\lim\limits_{x\rightarrow0}\dfrac{x\left(3x+2\right)}{x\left(\sqrt{3x^2+2}+\sqrt{2-2x}\right)}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{3x+2}{\sqrt{3x^2+2}+\sqrt{2-2x}}=\dfrac{2}{2\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)

NV
27 tháng 1 2021

\(\lim\limits_{x\rightarrow0}\dfrac{x}{\sqrt[7]{x+1}\left(\sqrt[]{x+4}-2\right)+2\left(\sqrt[7]{x+1}-1\right)}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{x}{\dfrac{x\sqrt[7]{x+1}}{\sqrt[]{x+4}+2}+\dfrac{2x}{\sqrt[7]{\left(x+1\right)^6}+\sqrt[7]{\left(x+1\right)^5}+\sqrt[7]{\left(x+1\right)^4}+\sqrt[7]{\left(x+1\right)^3}+\sqrt[7]{\left(x+1\right)^2}+\sqrt[7]{x+1}+1}}\)

\(=\dfrac{1}{\dfrac{1}{2+2}+\dfrac{2}{1+1+1+1+1+1+1}}=\dfrac{28}{15}\)

27 tháng 1 2021

em cảm ơn ạ

NV
27 tháng 1 2021

\(\lim\limits_{x\rightarrow3}\dfrac{\left(x^2+2x+1-5x-1\right)\left(x+\sqrt{4x-3}\right)}{\left(x^2-4x+3\right)\left(x+1+\sqrt{5x+1}\right)}\)

\(=\lim\limits_{x\rightarrow3}\dfrac{x\left(x-3\right)\left(x+\sqrt{4x-3}\right)}{\left(x-1\right)\left(x-3\right)\left(x+1+\sqrt{5x+1}\right)}\)

\(=\lim\limits_{x\rightarrow3}\dfrac{x\left(x+\sqrt{4x-3}\right)}{\left(x-1\right)\left(x+1+\sqrt{5x+1}\right)}=\dfrac{9}{8}\)

27 tháng 1 2021

Mong thầy/cô giúp e bài e gửi trong tin nhắn ạ,e cần gấp.E cảm ơn ạ!

27 tháng 1 2021

Tui ko biết đề bài có sai hay ko, bởi hệ số khác nhau thì đặt x ra là được, kết ủa là dương vô cùng, ko tồn tại a và b. 

27 tháng 1 2021

tổng hệ số = 0 mà bạn