Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2 + y2 +z2 + 2x - 4y+6z + 14=0
(x2 + 2x +1) + (y2 - 2.y.2 +22) + (z2 + 2.z.3 +32) =0
(x+1)2 + (y-2)2 +(z+3)2 =0
vì (x+1)2 >= 0; (y-2)2>=0 ; (z+3)2>=0
nên x+1=0 và y-2=0 và z+3=0
x=-1 ; y=2 ; z=-3
vậy x+y+z=-2
\(x^2+y^2+z^2+2x-4y+6z=-14\\ x^2+2x+1+y^2-4y+4+z^2+6z+9=0\\ \left(x+1\right)^2+\left(y-4\right)^2+\left(z+3\right)^2=0\\ \Rightarrow\left\{{}\begin{matrix}x+1=0\\y-4=0\\z+3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\y=4\\z=-3\end{matrix}\right.\\ \Rightarrow x+y+z=-1+4-3=0\)
có \(x^2+y^2+z^2+2x-4y+6z=-14\)
=>\(x^2+z^2+y^2+2x-4y+6z+14=0\)
=>\(\left(x^2+2x+1\right)+\left(y^2-4y+4\right)+\left(z^2+6y+9\right)=0\)
=>\(\left(x+1\right)^2+\left(y-2\right)^2+\left(z+3\right)^2=0\)
=> x+1 =0
y-2 =0
z+3 =0
=> x = -1
y = 2
z = -3
=> x + y + z = -2
\(x^2+y^2+z^2+2x-4y+6z=-14\)
\(x^2+y^2+z^2+2x-4y+6z+14=0\)
\(x^2+2x+1+y^2-4y+4+z^2+6z+9=0\)
\(\left(x+1\right)^2+\left(y-2\right)^2+\left(z+3\right)^2=0\)
\(\left(x+1\right)^2=0\) x+1 = 0 x = -1 | \(\left(y-2\right)^2=0\) y - 2 = 0 y = 2 | \(\left(z+3\right)^2=0\) z + 3 = 0 z = -3 |
vậy x + y + z = -1 + 2 + (-3) = -2
x2 + y2 + z2 + 2x - 4y + 6z = -14
=> x2 + y2 + z2 + 2x - 4y + 6z +14=0
=>(x2+2x+1)+(y2-4y+4)+(z2+6z+9)=0
=>(x+1)2+(y-2)2+(z+3)2=0
Ta thấy: \(\hept{\begin{cases}\left(x+1\right)^2\ge0\\\left(y-2\right)^2\ge0\\\left(z+3\right)^2\ge0\end{cases}}\)
=>(x+1)2+(y-2)2+(z+3)2\(\ge\)0
\(\Rightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y-2\right)^2=0\\\left(z+3\right)^2=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-1\\y=2\\z=-3\end{cases}}\)
\(\Rightarrow x+y+z=\left(-1\right)+2+\left(-3\right)=-2\)
chuyển vế tách HĐT tính được x=-1,y=2;z=-3 nên x+y+z=-2