K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2019

Bài này là Số gần số đúng của lớp 10  :P

Cái này là cách giải của chị t có j sai sót bỏ qua :)

Ta có: 

Quy tròn \(\sqrt[3]{4}\) sẽ là:

Gỉai:

​+) Để làm tròn đến hai chữ số thập phân, ta quan sát chữ số thập phân thứ ba,\(7>5\)ta  được số \(1,59\)

+) Để làm tròn số thập phân ba chữ số thứ tư thì \(4< 5\) ta được số \(1,587\)

+)Để làm tròn số thập phân bốn chữ số ta quan sát chữ số thập phân thứ 5 ta có \(0< 5\) ta được số \(1,5874\)

Vậy ta đã quy tròn được \(\sqrt[3]{4}\)

Khôg chắc đâu nhá :)

16 tháng 5 2017

Nếu lấy \(\sqrt{3}\) bằng \(1,73\) thì vì \(1,73< \sqrt{3}=1,7320508...< 1,74\) nên ta có \(\left|\sqrt{3}-1,73\right|< \left|1,73-1,74\right|=0,01\)

Vậy sai số tuyệt đối trong trường hợp này không vượt quá \(0,001\)

Nếu lấy \(\sqrt{3}\) bằng \(1,7321\) thì sai số tuyệt đối không vượt quá 0,0001

16 tháng 5 2017

a) \(0,0062\)

b) \(0,646310\)

27 tháng 2 2021

B

27 tháng 2 2021

Đáp án B nha

4 tháng 1 2023

Xét f(x) là hằng số thì \(f\left(x\right)\equiv0\).

Xét f(x) khác hằng.

Ta có \(a^2=\sqrt{\dfrac{3}{4}}+\sqrt{\dfrac{4}{3}}+2\Rightarrow a^2-2=\sqrt{\dfrac{3}{4}}+\sqrt{\dfrac{4}{3}}\)

\(\Rightarrow\left(a^2-2\right)^2=\dfrac{3}{4}+\dfrac{4}{3}+2=\dfrac{49}{12}\Rightarrow a^4-4a^2-\dfrac{1}{12}=0 \).

Bằng cách đồng nhất hệ số, dễ dàng chứng minh được đa thức \(P\left(x\right)=x^4-4x^2-\dfrac{1}{12}\) bất khả quy trên \(\mathbb{Q}[x]\).

Do đó ta có P(x) là đa thức tối tiểu của a, tức mọi đa thức hệ số hữu tỉ khác nhận a là nghiệm đều chia hết cho P(x).

Vì f(x) là đa thức hệ số nguyên nên \(f\left(x\right)\) chia hết cho \(12P\left(x\right)=12x^4-48x^2-1\).

Vậy \(f\left(x\right)=K\left(x\right)\left(12x^4-48x^2-1\right)\), với \(K\in\mathbb Z[x]\) bất kì.

5 tháng 1 2023

phải tìm đa thức đó chứ anh, như này chưa được đâu. 

29 tháng 6 2019

\(\frac{2-\sqrt{3}}{1+\sqrt{4+2\sqrt{3}}}+\frac{2+\sqrt{3}}{1-\sqrt{4-2\sqrt{3}}}=\frac{2-\sqrt{3}}{1+\sqrt{3+2\sqrt{3}+1}}+\frac{2+\sqrt{3}}{1-\sqrt{3-2\sqrt{3}+1}}\)

\(=\frac{2-\sqrt{3}}{1+\sqrt{3}+1}+\frac{2+\sqrt{3}}{1-\sqrt{3}+1}\)

\(=\frac{2-\sqrt{3}}{2+\sqrt{3}}-\frac{2+\sqrt{3}}{\sqrt{3}}\)

\(=\frac{18-14\sqrt{3}}{3}\)

NV
21 tháng 12 2020

ĐKXĐ: \(0\le x\le4\) ;\(x\ne2\)

\(\Leftrightarrow\dfrac{\sqrt{x}\left(\sqrt{x}+\sqrt{4-x}\right)}{x-2}=2x-3\)

\(\Leftrightarrow x+\sqrt{4x-x^2}=2x^2-7x+6\)

\(\Leftrightarrow2\left(4x-x^2\right)+\sqrt{4x-x^2}-6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{4x-x^2}=-2\left(loại\right)\\\sqrt{4x-x^2}=\dfrac{3}{2}\end{matrix}\right.\)

\(\Leftrightarrow4x-x^2=\dfrac{9}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4+\sqrt{7}}{2}\\x=\dfrac{4-\sqrt{7}}{2}\end{matrix}\right.\) \(\Rightarrow abc\)