K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2015

dư 2 nha tick mk

20 tháng 11 2015

Ta có: 42 = 16 chia 7 dư 2 

Vậy n2 chia 7 dư 2     

20 tháng 7 2017

\(n^2:7\)dư 2

\(n^3:7\)dư 1

12 tháng 7 2019

n chia 7 dư 4 thì n có dạng \(7k+4\)

Ta có:

\(n^2=\left(7k+4\right)^2=49k^2+56k+14+2\) chia 7 dư 2

\(n^3=\left(7k+3\right)^3=343k^3+147k^2+189k+21+6\) chia 7 dư 6

12 tháng 7 2019

zZz Cool Kid zZz ơi bạn lộn phần \(n^3\)kìa

25 tháng 7 2016

n = 7k + 4

=> n2 = 49k + 16

Mà : 49k chia hết cho 7; 16 chia 7 dư 2

<=> 49k + 16 chia 7 dư 2

Vậy: n2 chia 7 dư 2

=> n3 = 343k + 64

Mà : 343k chia hết cho 7; 64 chia 7 dư 1

=> 343k + 64 chia 7 dư 1

Vậy n3 chia 7 dư 1

24 tháng 7 2015

bài này trong olimpic tớ bí nè

24 tháng 7 2015

2 tick đúng nha 

 

11 tháng 7 2016

câu 1 sai đề bạn ạ

câu 2: a đồng dư 4 mod 4. ta có a2 đồng dư 16 hay đồng dư 5 mod 11

11 tháng 7 2016

1.Đề sai

2. Vì a chia 11 dư 4 nên a = 11k + 4 với k thuộc N 

Ta có : \(a^2=\left(11k+4\right)^2=\left(11k\right)^2+2.11k.4+11+5=11\left(11k^2+8k+1\right)+5=11Q+5\)

Do đó \(a^2\) chia 11 dư 5

12 tháng 11 2017

2519 là đúng

9 tháng 10 2021

Freefire

22 tháng 2 2018

Ta có : x chia cho 2 dư 1

           x chia cho 3 dư 2 

           x chia cho 4 dư 3 

           x chia cho 5 dư 4 \(\Rightarrow\)x+1 chia hết cho 2;3;4;5;6;7;8;9\(\Rightarrow\)x +1 = BCNN(2;3;4;5;6;7;8;9) = 2520 \(\Rightarrow\)x=2519(nếu x nhỏ nhất)

           x chia cho 6 dư 5 

           x chia cho 7 dư 6

           x chia cho 8 dư 7

           x chia cho 9 dư 8

Còn nếu x không nhỏ nhất thì nhân lần lượt với các số tự nhiên từ 0;1;2;3...

23 tháng 9 2020

Gọi x là số cần tìm 

x chia 2 dư 1 chia 3 dư 2 chia 4 dư 3 ... chia 9 dư 8 

\(\Rightarrow x+1⋮2;3;4;5;6;7;8;9\)  

x có dạng \(x+kBCNN\left(2;3;4;5;6;7;8;9\right);k\in N\)

\(2=2\) 

\(3=3\)

\(4=2^2\) 

\(5=5\) 

\(6=2\cdot3\) 

\(7=7\) 

\(8=2^3\) 

\(9=3^2\) 

\(BCNN\left(2;3;4;5;6;7;8;9\right)=2^3\cdot3^2\cdot5\cdot7=2520\) 

\(x+1=2520\) 

\(x=2519\) 

Vậy \(x=\left\{2519;2519+1\cdot2520;2519+2\cdot2520;...\right\}\) 

\(x=\left\{2519;5039;7559;...\right\}\)

29 tháng 7 2018

n chia 9 dư 5 nên n có dạng:  \(n=9k+5\)   \(\left(n\in N\right)\)

Ta có:  \(n^2=\left(9k+5\right)^2=81k^2+90k+25=9\left(9k^2+10k+2\right)+7\)

Ta thấy:  \(9\left(9k^2+10k+2\right)\)\(⋮\)\(9\);  7 không chia hết cho 9

Vậy  \(n^2\)chia 9 dư 7