Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số tự nhiên a chia cho 5 dư 4, ta có: a = 5k + 4 (k ∈N)
Ta có: \(a^2\) = \(\left(5k+4\right)^2\)
= 25\(k^2\) + 40k + 16
= 25\(k^2\) + 40k + 15 + 1
= 5(5\(k^2\)+ 8k +3) +1
Ta có: 5 ⋮ 5 nên 5(5\(k^2\) + 8k + 3) ⋮ 5
Vậy \(a^2\) = (5k+4)25k+42 chia cho 5 dư 1. (đpcm)
Đặt a =3k+1, b=3k+2
\(\Rightarrow ab=\left(3k+1\right)\left(3k+2\right)=9k^2+9k+2=3\left(3k^2+3k\right)+2\) chia 3 dư 2
Ta co:
\(a=5n+4\)
\(\Rightarrow a^2=\left(5n+4\right)^2=25n^2+40n+16\)
cai này chia 5 dư 1
Theo đề, a chia 5 dư 4 => a = 5k + 4 (k thuộc N)
Vì hai số đều là các số tự nhiên
Bình phương hai vế ta được: a2 = (5k + 4)2 = (5k)2+2.5k.4+42 = 25k2 + 40k + 16
Vì 25k2 chia hết cho 5
40k chia hết cho 5
Mà 16 chia 5 dư 1
Vậy 25k2 + 40k + 16 chia 5 dư 1
=> ĐPCM
a chia 5 dư 4=>a=5k+4
=>a2=(5k+4)(5k+4)
=(5k+4)5k+4(5k+4)
=(5k+4)5k+5.4k+3.5+1 chia 5 dư 1
=>đpcm