K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2016

a=5n+1

b=5k+2 

a^2=1 (mod 5)

b^2=4 (mod5)

(a^2+b^2)=0 (mod 5) 

không được dùng thì khai triển ra

a^2+b^2=(5n+1)^2+(5k+2)^2

25n^2+10n+1+25k^2+20k+4=5(5n^2...) chia hết cho 5

19 tháng 10 2016

a=5n+1

b=5k+2

a^2=1 ﴾mod 5﴿

b^2=4 ﴾mod5﴿

﴾a^2+b^2﴿=0 ﴾mod 5﴿

không được dùng thì khai triển ra

a^2+b^2=﴾5n+1﴿^2+﴾5k+2﴿^2

25n^2+10n+1+25k^2+20k+4=5﴾5n^2...﴿ chia hết cho 5 

chia hết mà còn dư ak bạn ~!~

29 tháng 10 2016
  • Ta có a : 5 dư 1 => a = 5t +1 ( t thuộc N )
  •          a : 5 dư 2 => a= 5k +2 ( k thuộc N )
  • Theo BT ta có ( 5t + 1 )2 + ( 5k + 2 )2 = 25t2 +10t + 1 + 25k2 + 20k + 4

                                                                 = 25( t2  + k2 ) + 10( t + 10k ) +5  chia hết cho 5 vì 25( t + k) ; 10( t + 10k ) và 5 đều chia hết cho 5

      Nên tổng các bình phương của hai số a và b đều chia hết cho 5

      

12 tháng 9 2021

Đặt A=5k+1, B=5k+4 \(\left(k\in N\right)\)

\(\Rightarrow ab+1=\left(5k+1\right)\left(5k+4\right)+1=25k^2+25k+5=5\left(5k^2+5k+1\right)⋮5\left(đpcm\right)\)

\(ab+1=\left(5k+1\right)\left(5k+4\right)+1\)

\(=25k^2+20k+5k+4+1\)

\(=25k^2+25k+5⋮5\)

23 tháng 7 2018

Vì a chia 5 dư 1 nên đặt a = 5x + 1 (x Î N); b chia 5 dư 4 nên đặt b = 5y + 4(y Î N).

Ta có a.b + 1 = (5x + 1)(5y + 4) + 1 = 25xy + 20x + 5y + 5.

Þ ab + 1 = 5(5xy + 4x + y + 1) ⋮  5 (đpcm).

7 tháng 7 2016

Đặt \(a=5k+2\)

      \(b=5h+3\)

\(\Rightarrow ab=\left(5k+2\right)\left(5h+3\right)\)

\(=25kh+15k+10h+6\)

\(=25kh+15k+10h+5+1\)

\(=5\left(5kh+3k+2h+1\right)+1\) chia 5 dư 1.

Vậy ab chai 5 dư 1.

26 tháng 7 2016

a chia 5 dư 4  =>  a = 5k + 4

\(\Rightarrow a^2=\left(5k+4\right)^2=25k^2+40k+16=5k\left(5k+8\right)+16\)

5k (5k + 8) chia hết cho 8  => tận cùng = 0 hoặc = 5  => 5k (5k + 8) + 16 tận cùng 1 hoặc 6

=> a^2 chia 5 dư 1

2 tháng 10 2019

Bài 1: 

Vì a chia cho 3 dư 1 \(\Rightarrow a\equiv1\left(mod3\right)\)

b chia cho 3 dư 2 \(\Rightarrow b\equiv2\left(mod3\right)\)

\(\Rightarrow ab\equiv2\left(mod3\right)\)

Vậy ab chia cho 3 dư 2 

Cách 2: ( hướng dẫn)

a chia 3 dư 1 nên a=3k+1(k thuộc N ) b chia 3 dư 2 nên b=3k+2 ( k thuộc N )

Từ đó nhân ra ab=(3k+1)(3k+2) rồi chứng minh

Bài 2:

Ta có: \(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

\(=-5n\)

Vì \(n\)nguyên \(\Rightarrow-5n⋮5\)

\(\Rightarrow n\left(2n-3\right)-2n\left(n+1\right)⋮5\forall n\in Z\left(đpcm\right)\)

2 tháng 10 2019

cảm ơn bạn lê tài bảo châu nhé