Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) ĐKXĐ:......
Ta có: \(\log_{2x+1}(3-x^2)=2\)
\(\Leftrightarrow 3-x^2=(2x+1)^2\)
\(\Leftrightarrow 5x^2+4x-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-2+\sqrt{14}}{5}\\x=\dfrac{-2-\sqrt{14}}{5}\end{matrix}\right.\)
Kết hợp với đkxđ suy ra \(x=\frac{-2+\sqrt{14}}{5}\) là nghiệm
b) ĐKXĐ:....
Đặt \(2-x=a\Rightarrow \log_2(2a+1)=a\) (\(a>\frac{-1}{2}\))
\(\Leftrightarrow 2a+1=2^a\)
Xét hàm \(y(a)=2^a-2a-1\)
\(\Rightarrow y'=\ln 2.2^a-2=0\Leftrightarrow a=\log_2\left(\frac{2}{\ln 2}\right)\)
Lập bảng biến thiên của $y(a)$ với $a>\frac{-1}{2}$ ta thấy đồ thì của $y(a)$ cắt đường thẳng \(y=0\) tại hai điểm, tức là pt có hai nghiệm. Trong đó một nghiệm thuộc \((-\frac{1}{2}; \log_2\left(\frac{2}{\ln 2}\right))\) và nghiệm khác thuộc \((\log_2\left(\frac{2}{\ln 2}\right);+\infty)\)
Thực hiện shift-solve ta thu được \(a=0\) hoặc \(a\approx 2,66\)
Câu c)
ĐKXĐ: \(x>-1\)
Ta có: \(\log_2(x+1)=4-3x\Leftrightarrow x+1=2^{4-3x}\)
Ta thấy:
\((x+1)'=1>0\) nên hàm vế trái đồng biến trên KXĐ
\((2^{4-3x})'=-3.\ln 2.2^{4-3x}<0\) nên hàm vế phải nghịch biến trên KXĐ
Do đó, PT chỉ có thể có duy nhất một nghiệm
Thấy \(x=1\) thỏa mãn nên $x=1$ là nghiệm duy nhất của phương trình
\(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Rightarrow2^{x+\frac{1}{x}}\ge2^2=4\Rightarrow VT\ge4\)
Xét biểu thức dưới hàm logarit vế phải:
\(14-\left(y-2\right)\sqrt{y+1}=14-\left(y+1\right)\sqrt{y+1}+3\sqrt{y+1}\)
Đặt \(t=\sqrt{y+1}\ge0\) thì \(f\left(t\right)=14-t^3+3t\)
\(f'\left(t\right)=-3t^2+3=0\Rightarrow t=1\)
Dễ dạng nhận ra đây là điểm cực đại của hàm \(f\left(t\right)\)
\(\Rightarrow f\left(t\right)_{max}=f\left(1\right)=16\)
\(\Rightarrow VP\le log_216=4\le VT\)
Đẳng thức xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}x=\frac{1}{x}\\t=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2=1\\\sqrt{y+1}=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)
\(\Rightarrow P=1+0+0+1=2\)
- Nếu đề là \(2^{x+\frac{1}{2}}\) thì \(VT>\sqrt{2}\) hoàn toàn ko thể đánh giá được P, vì miền giá trị của VT và VP trùng nhau 1 đoạn (x;y) rất dài cho nên sẽ có vô số giá trị P xảy ra nên mình khẳng định luôn là đề sai
Đề bài là \(2^{x+\frac{1}{2}}\) hả bạn? Với đề này thì ko giải được