Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có đồ thị hàm số y = ax2 đi qua điểm (-2 ; 2)
b) Tại x = -3 ta có:
Vậy điểm có hoành độ x = -3 thì tung độ bằng 4,5.
c) Hoành độ các điểm có tung độ y =8 thỏa mãn phương trình: ⇔ x2 = 16 ⇔ x = 4 hoặc x = -4.
Vậy các điểm thuộc parabol có tung độ bằng 8 là (4; 8) và (-4; 8).
Hoành độ các điểm có tung độ y =8 thỏa mãn phương trình: ⇔ x2 = 16 ⇔ x = 4 hoặc x = -4.
Vậy các điểm thuộc parabol có tung độ bằng 8 là (4; 8) và (-4; 8).
Tại x = -3 ta có:
Vậy điểm có hoành độ x = -3 thì tung độ bằng 4,5.
Bài giải:
a) Theo hình vẽ, ta lấy điểm A thuộc đồ thị có tọa độ là x = -2, y = 2. Khi đó ta được:
2 = a . (-2)2 suy ra a =
b) Đồ thị có hàm số là y = x2 . Tung độ của điểm thuộc parabol có hoành độ x = -3 là y = (-3)2 suy ra y = .
c) Các điểm thuộc parabol có tung độ là 8 là:
8 = x2 ⇔ x2 = 16 ⇔ x = ± 4
Ta được hai điểm và tọa độ của hai điểm đó là M(4; 8) và M'(-4; 8).
a: Thay x=-2 và y=4 vào (P), ta được:
(-2)^2*a=4
=>a=1
=>y=x^2
c: PTHDGĐ là:
x^2=2x
=>x=0 hoặc x=2
=>y=0 hoặc y=4
a, y = ax^2 đi qua B(2;4)
<=> 4a = 4 <=> a = 1
b, bạn tự vẽ
a: Thay x=2 và y=4 vào hàm số, ta được:
\(a\cdot4=4\)
hay a=1
b: Thay x=2 và y=4 vào hàm số, ta được:
4a=4
hay a=1
a, bảng giá trị tương ứng của x và y
x | -2 | -1 | 0 | 1 | 2 |
y | -4 | -1 | 0 | -1 | -4 |
b, Vì (d) có hệ số góc bằng 3 nên (d) có dạng y = 3x + b
Vì M(2;yM) thuộc (P) nên \(y_M=-2^2=-4\)
=> M(2 ; -4)
Vì M thuộc (d) nên
-4 = 3.2 + b
=> b = -10
=> (d) y = 3x - 10
b) Phương trình hoành độ giao điểm của (P) và (d) là:
\(x^2=-x+2\)
\(\Leftrightarrow x^2+x-2=0\)(1)
a=1; b=1; c=-2
Vì a+b+c=0 nên phương trình (1) có hai nghiệm phân biệt là:
\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{-2}{1}=-2\)
Thay x=1 vào (d), ta được:
y=-1+2=1
Thay x=-2 vào (d), ta được:
y=-(-2)+2=2+2=4
Vậy: (P) và (d) có hai tọa độ giao điểm là (1;1) và (-2;4)
Ta có đồ thị hàm số y = ax2 đi qua điểm (-2 ; 2)