Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 22 + 42 + 62 + ... + 202
= (2.1)2 + (2.2)2 + (2.3)2 ... (2.10)2
= 22.12 + 22.22 + 22.32 + ... + 22.102
= 22 (12 + 22 + ... + 102 )
= 4 . 385 = 1540
Ta có : \(1^2+2^2+3^2+.....+10^2=385\)
\(\Leftrightarrow2^2\left(1^2+2^2+3^2+.....+10^2\right)=2^2.385\)
\(\Leftrightarrow2^2+4^2+6^2+.....+20^2=4.385\)
\(\Leftrightarrow2^2+4^2+6^2+.....+20^2=1540\)
Ta có \(2^2+4^2+...+20^2=2^2\left(1^2+2^2+...+10^2\right)=2^2.385=1540\).
Ta có 12 + 22 + 32 + …102 = 385
Suy ra ( 12 +22 + 32 +…+102 ) .32 = 385.32
Do đó ta tính được A = 32 + 62 + 92 + …+302 = 3465
Đạt A=2^2+4^2+6^2+...+20^2
A=2^2X(1^2+2^2+3^2+...+10^2) (1)
Mà 1^2+2^2+3^2+...+10^2=385(2)
Thay (2) vào (1), có: A=2^2x385
A=4X385=1540
Vậy 2^2+4^2+6^2+...+20^2 = 1540
Đặt T = 12 + 22 + ... + 102 = 385
=> T x 22 = 12. 22 + 22. 22 + ... + 102.22 = 385. 22
=> T x 22 = (1.2)2 + (2. 2)2 + ... + (10.2)2 = 385. 22
=> T x 22 = (2)2 + (4)2 + ... + (20)2 = 385. 22
=> T x 22 = S = 385. 22
=> S = 385 x 4
Trong câu hỏi tương tự ấy giáo viên olm giải rồi
A = 1002 + 2002 + 3002 + ... + 10002
A = ( 1.100 )2 + ( 2 .100 )2 + ( 3. 100 )2 + ... + ( 10 . 100 )2
A = 1002 ( 12 + 22 + ... + 102 )
A = 1002 .385
A = 3850000
A = 1002 + 2002 + 3002 + ... + 10002
A = 1002 . (12 + 22 + 32 + ... + 102)
A = 10000 . 385
A = 3850000
\(A=100^2+200^2+300^2+...+1000^2\)
=>\(A=100^2\left(1^2+2^2+3^2+...+10^2\right)\)
=>\(A=10000.385\)
=>\(A=3850000\)
\(A=100^2+200^2+300^2+......+1000^2\)
\(=1000^2\left(1^2+2^2+3^2+...+10^2\right)\)
\(=10000.385\\\)
\(=3850000\)