K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2019

Câu hỏi của Hoàng Lê Minh - Toán lớp 8 - Học toán với OnlineMath

20 tháng 11 2019

Câu hỏi của Hoàng Lê Minh - Toán lớp 8 - Học toán với OnlineMath

20 tháng 11 2019

Ta có: \(m+n+p=2ma+2np+2pc\Rightarrow ma+np+pc=\frac{1}{2}\left(m+n+p\right)\)(1)

lại  có: 

\(\hept{\begin{cases}m=bn+cp\\n=am+cp\\p=am+bn\end{cases}\Rightarrow}\hept{\begin{cases}m-n=bn-am\\n-p=cp-bn\\p-m=am-cp\end{cases}}\Rightarrow\hept{\begin{cases}m\left(a+1\right)=n\left(b+1\right)\\n\left(b+1\right)=p\left(c+1\right)\\p\left(c+1\right)=m\left(a+1\right)\end{cases}}\)

\(\Rightarrow\frac{1}{m\left(a+1\right)}=\frac{1}{n\left(b+1\right)}=\frac{1}{p\left(c+1\right)}=\frac{3}{ma+mb+mc+m+n+p}\)( Dãy tỉ số bằng nhau)

\(=\frac{3}{\frac{1}{2}\left(m+n+p\right)+n+m+p}=\frac{2}{n+m+p}\)

=> \(\frac{1}{a+1}=\frac{2m}{m+n+p}\)

\(\frac{1}{b+1}=\frac{2n}{m+n+p}\)

\(\frac{1}{c+1}=\frac{2p}{m+n+p}\)

=> \(A=\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=\frac{2m+2n+2p}{m+n+p}=2\)

23 tháng 5 2021

A B C P M N D E F

a) Ta có ^APB = ^BAC/2 + ^ABC/2 + ^ACB = 900 + ^ACB/2 = ^AMP; ^BAP = MAP

Suy ra \(\Delta\)AMP ~ \(\Delta\)APB (g.g) => \(\frac{AM}{PM}=\frac{AP}{BP}\). Tương tự \(\frac{PN}{BN}=\frac{AP}{BP}\)

Từ đó \(\frac{AM}{BN}.\frac{PN}{PM}=\left(\frac{AP}{BP}\right)^2\). Dễ thấy PM = PN, vậy \(\frac{AM}{BN}=\left(\frac{AP}{BP}\right)^2\)

b) Theo hệ thức lượng và tam giác đồng dạng, ta có biến đổi sau:

\(\frac{AM}{AC}+\frac{BN}{BC}+\frac{CP^2}{BC.AC}\)

\(=\frac{AM}{AP}.\frac{AP}{AC}+\frac{BN}{BP}.\frac{BP}{BC}+\frac{CP^2}{BC.AC}\)

\(=\frac{AP^2}{AB.AC}+\frac{BP^2}{BA.BC}+\frac{CP^2}{CA.CB}\)

\(=\frac{AP^2.BC+BP^2.CA+CP^2.AB}{BC.CA.AB}\)

\(=\frac{AP^2.\sin A+BP^2.\sin B+CA^2.\sin C}{2S}\)(S là diện tích tam giác ABC)

\(=\frac{AP^2.\sin\frac{A}{2}.\cos\frac{A}{2}+BP^2.\sin\frac{B}{2}.\cos\frac{B}{2}+CP^2.\sin\frac{C}{2}.\cos\frac{C}{2}}{S}\)

\(=\frac{FA.FP+DB.DP+EC.EP}{S}=\frac{dt\left[AFPE\right]+dt\left[BDPF\right]+dt\left[CEPD\right]}{S}=1.\)