Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
m + 4n chia hết cho 13 => 3m + 12n chia hết cho 13
Xét tổng: A = 3m + 12n + 10m + n = 13m + 13n chia hết cho 13
CM theo chiều xuôi (có m + 4n chia hết cho 13, CM 10m + n chia hết cho 13):
A chia hết cho 13
Mà m + 4n chia hết cho 13 => 3m + 12n chia hết cho 13
=> 10m + n chia hết cho 13
CM theo chiều ngược:
A chia hết cho 13
Mà 10m + n chia hết cho 13
=> 3m + 12n chia hết cho 13
=> 3(m + 4n) chia hết cho 13
Mà (3,13) = 1
=> m + 4n chia hết cho 13
Vậy:.
Ta có: 10m+n chia hết cho 13
=>10m chia hết cho 13
mà 10 không chia hết cho 13 nên m chia hết cho 13
=>n chia hết cho 13 nên 4n chia hết cho 13
=>m+4n chia hết cho 13
=>đpcm(ghi lại đề)
Ta có : 2x + 3y ⋮ 17 => 4(2x + 3y) ⋮ 17
=> 8x + 12y ⋮ 17
Xét tổng (8x + 12y) + (9x + 5y)
= (8x + 9x) + (12y + 5y)
= 17x + 17y = 17(x + y) ⋮ 17
=> (8x + 12y) + (9x + 5y) ⋮ 17
Mà (8x + 12y) ⋮ 17 => (9x + 5y) ⋮ 17 ( đpcm )
Ta có \(2x+3y⋮17\Leftrightarrow18x+27y⋮17\)
\(\Rightarrow18x+27y-17y⋮17\)
\(\Rightarrow18x+10y⋮17\)mà (2;17)=1
\(\Rightarrow9x+5y⋮17\)
Ngược lại làm tương tự bạn nhé
Ta có: x+5y chia hết cho 7
=>x+5y+7.7x chia hết cho 7
=>x+49x+5y chia hết cho 7
=>50x+5y chia hết cho 7
=>5.(10x+y) chia hết cho 7
Mà (5,7)=1
=>10x+y chia hết cho 7
=>ĐPCM
Ngược lại: 10x+y chia hết cho 7
=>5.(10x+y) chia hết cho 7
=>50x+5y chia hết cho 7
=>x+49x+5y chia hết cho 7
=>x+5y+7.7x chia hết cho 7
=>x+5y chia hết cho 7
=>ĐPCM
10a+b\(⋮\)13
=> 4(10a+b)\(⋮\)13
=> 40a+4b\(⋮\)13
=> a+4b+39a\(⋮\)13
Mà 39a\(⋮\)13 nên a+4b\(⋮\)13
Vậy nếu 10a+b\(⋮\)13 thì a+4b\(⋮\)13
+) Chứng minh chiều xuối :
Cho a + 4b ⋮ 13 ; CMR : 10a + b ⋮ 13
Vì a + 4b ⋮ 13 => 10 . ( a + 4b ) ⋮ 13 => 10a + 40b ⋮ 13
Xét hiệu ( 10a + 40b ) - ( 10a + b ) = 39b ⋮ 13
\(\text{Vì }\hept{\begin{cases}10a+40b⋮13\\\left(10a+40b\right)-\left(10a+b\right)⋮13\end{cases}}\)
=> 10a + b ⋮ 13 (1)
+) Chứng minh chiều ngược :
Cho 10a + b ⋮ 13 ; CMR : a + 4b ⋮ 13
Vì 10a + b ⋮ 13 => 4 . ( 10b + a ) ⋮ 13 => 40a + 4b ⋮ 13
Xét hiệu : ( 40a + 4b ) - ( a + 4b ) = 39a ⋮ 13
\(\text{Vì }\hept{\begin{cases}40a + 4b ⋮ 13\\\left(40a+4b\right)-\left(a+4b\right)⋮13\end{cases}}\)
=> a + 4b ⋮ 13 (2)
Từ (1) và (2) => a + 4b ⋮ 13 <=> 10a + b ⋮ 13