Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( a − b ) 2=( a + b ) 2−4 a b
thay a+b = 7 và a.b=12 ta đc
\(\left(a-b\right)^2=\) 7^2-4x12=1
\(a,a^2+b^2=\left(a+b\right)^2-2ab=3^2-2\left(-10\right)=29\\ b,a^2+b^2=\left(a-b\right)^2+2ab=2^2+2\cdot24=52\)
a, Ta có :
\(a^2+b^2=a^2-2ab+b^2+2ab\) \(=\left(a-b\right)^2+2ab=m^2+2n\)
b, Ta có :
\(\left(a+b\right)^2=a^2+2ab+b^2\) \(=a^2-2ab+b^2+4ab=\left(a-b\right)^2+4ab\) \(=m^2+4n\)
Bài 1:
Đặt G(x)=0
\(\Leftrightarrow3\cdot\left(5x-1\right)\left(3x-1\right)=0\)
=>(5x-1)(3x-1)=0
=>5x-1=0 hoặc 3x-1=0
=>x=1/5 hoặc x=1/3
+ Chứng minh (a + b)2 = (a – b)2 + 4ab
Ta có:
VP = (a – b)2 + 4ab = a2 – 2ab + b2 + 4ab
= a2 + (4ab – 2ab) + b2
= a2 + 2ab + b2
= (a + b)2 = VT (đpcm)
+ Chứng minh (a – b)2 = (a + b)2 – 4ab
Ta có:
VP = (a + b)2 – 4ab = a2 + 2ab + b2 – 4ab
= a2 + (2ab – 4ab) + b2
= a2 – 2ab + b2
= (a – b)2 = VT (đpcm)
+ Áp dụng, tính:
a) (a – b)2 = (a + b)2 – 4ab = 72 – 4.12 = 49 – 48 = 1
b) (a + b)2 = (a – b)2 + 4ab = 202 + 4.3 = 400 + 12 = 412.
1) ( a - b )2 = a2 - 2ab + b2 = a2 + 2ab + b2 - 4ab = ( a + b )2 - 4ab
= 72 - 4.5 = 49 - 20 = 29
2) ( a + b )2 = a2 + 2ab + b2 = a2 - 2ab + b2 + 4ab = ( a - b )2 + 4ab
= 52 + 4.3 = 25 + 12 = 37
a.
Vơi mọi x, y ta luôn có:
\(\left(x-y\right)^2\ge0\Leftrightarrow x^2+y^2\ge2xy\) (1)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge x^2+y^2+2xy\)
\(\Leftrightarrow x^2+y^2\ge\dfrac{1}{2}\left(x+y\right)^2>\dfrac{1}{2}.1=\dfrac{1}{2}\) (đpcm)
b.
Sử dụng kết quả (1), ta có:
\(\dfrac{a}{b}+\dfrac{b}{a}=\dfrac{a^2+b^2}{ab}\ge\dfrac{2ab}{ab}=2\) (đpcm)
\(a^5+b^5=\left(a^2+b^2\right)\left(a^3+b^3\right)-a^2\cdot b^3-a^3\cdot b^2=\left(a^2+b^2\right)\cdot\left(a^3+b^3\right)-a^2\cdot b^2\left(x+y\right)\)
\(=\left[\left(a+b\right)^2-2ab\right]\cdot\left[\left(a+b\right)^3-ab\cdot\left(a+b\right)\right]-\left(a\cdot b\right)^2\cdot\left(a+b\right)\)
\(=\left[2^2-2\cdot\left(-2\right)\right]\cdot\left[2^3-\left(-2\right)\cdot2\right]-\left(-2\right)^2\cdot2\)
\(=88\)
Cảm ơn bạn nhiều nha ~~~