K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2019

Chia hình chữ nhật 4 x 3 thành 24 hình chữ nhật \(\frac{1}{2}\times1\).

Diện tích mỗi hình chữ nhật \(\frac{1}{2}\times1\) là \(\frac{1}{2}\left(cm^2\right)\)

G/s : Mỗi  hình chữ nhật  chỉ chứa ít hơn 3 điểm 

Tổng số điểm của hình chữ nhật  3 x 4 thì sẽ < 2.24 = 48 điểm <49 điểm ( vô lí)

=> Theo nguyên lí Dirichlet sẽ tồn tại một hình chữ nhật \(\frac{1}{2}\times1\)  chứa ít nhất  3 điểm trong 49 điểm đã cho.

Tam giác có 3 đỉnh nằm trong hình chữ nhật \(\frac{1}{2}\times1\) nên diện tích < \(\frac{1}{2}\left(cm^2\right)\)

Vậy ....

23 tháng 11 2017

mình làm cách này nhé:
gọi O, I là giao 2 đường chéo của hv ABCD và A'B'C'D'
ta có :
PO//=MI
QO//=IN
suy ra tam giác POQ= tam giác MIN (c-g-c)
tương tự PON=MIQ(c-g-c)
từ đó lấy góc và cạnh sẽ được

a) Xét ΔAEF và ΔADC có 

\(\dfrac{AE}{AD}=\dfrac{AF}{AC}\left(\dfrac{3}{4}=\dfrac{6}{8}\right)\)

\(\widehat{A}\) chung

Do đó: ΔAEF∼ΔADC(c-g-c)

b) Ta có: ΔAEF∼ΔADC(cmt)

nên \(\widehat{AEF}=\widehat{ADC}\)(hai góc tương ứng) và \(\widehat{AFE}=\widehat{ACD}\)(hai góc tương ứng)

Xét ΔIDF và ΔIEC có 

\(\widehat{ICE}=\widehat{IFD}\)(cmt)

\(\widehat{DIF}=\widehat{EIC}\)(hai góc đối đỉnh)

Do đó: ΔIDF∼ΔIEC(g-g)

Suy ra: \(k=\dfrac{DF}{EC}=\dfrac{AF-AD}{AC-AE}=\dfrac{6-4}{8-3}=\dfrac{2}{5}\)

11 tháng 3 2020

A B C N M G E F I

a, xét tứ giác BICG có : 

M là trung điểm cuả BC do AM là trung tuyến (gt)

M là trung điểm của GI do I đx G qua M (gt)

=> BICG là hình bình hành (dh)

+ G là trọng tâm của tam giác ABC (gt)

=> GM = AG/2 và  GN = BG/2 (đl)

E; F lần lượt là trung điểm của  GB; GA (gt) => FG = AG/2 và GE = BG/2 (tc)

=> FG = GM và GN = GE 

=> G là trung điểm của FM và EN 

=> MNFE là hình bình hành (dh)

b, MNFE là hình bình hành (câu a)  

để MNFE là hình chữ nhật

<=> NE = FM 

có : NE = 2/3BN và FM = 2/3AM

<=> AM = BN  mà AM và BN là trung tuyến của tam giác ABC (Gt)

<=>  tam giác ABC cân tại C (đl)

c, khi BICG là hình thoi 

=> BG = CG 

BG và AG là trung tuyến => CG là trung tuyến

=> tam giác ABC cân tại A