Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B.
TXĐ: x + 2 > 0 1 − x > 0 ⇔ − 2 < x < 1.
Bất phương trình tương đương với:
log 3 x + 2 1 − x ≥ 1 ⇔ x + 2 1 − x ≥ 3 ⇔ x + 2 ≥ 3 − 3 x ⇔ x ≥ 1 4 .
Do đó a = 1 4 ; b = 1 nên
S = 2 2 + 1 3 = 5.
Đáp án A
Bất phương trình đã cho ⇔ 1 + 2 x + 1 + x 2 − x + 1 − x 2 + 2 x 3 + 1 < m (*)
Đặt t = x + 1 + x 2 − x + 1
⇔ t 2 = x 2 + 2 + 2 x 3 + 1 ⇔ x 2 + 2 x 3 + 1 = t 2 − 2
Khi đó, bất phương trình * ⇔ 1 + 2 t − t 2 − 2 < m
⇔ m > f t = − t 2 + 2 t + 3 I .
Với x > − 1 suy ra t > 3
khi đó: I ⇔ m ≥ max 3 ; + ∞ f t = 2 3 .
x4+(1−2m)x2+m2−1(1)
Đặt t=x2(t\(\ge\) 0) ta được:
t2+(1-2m)t+m2-1(2)
a)Để PT vô nghiệm thì:
\(\Delta=\left(1-2m\right)^2-4.1.\left(m^2-1\right)<0\)
<=>1-4m+4m2-4m2+4<0
<=>5-4m<0
<=>m>5/4
Chọn B.
Phương pháp:
Đưa phương trình về dạng tích, giải phương trình tìm nghiệm và tìm điều kiện để bài toán thỏa.