Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{32}=4\sqrt{2};\sqrt{8}=2\sqrt{2}\)
\(\Rightarrow\sqrt{32}x-\left(\sqrt{8}+\sqrt{2}\right)x>\sqrt{2}\)
\(\Leftrightarrow4\sqrt{2}x-\left(2\sqrt{2}+\sqrt{2}\right)x>\sqrt{2}\)
\(\Leftrightarrow4\sqrt{2}x-3\sqrt{2}x>\sqrt{2}\)
\(\Leftrightarrow\sqrt{2}x>\sqrt{2}\)
vậy câu D) đúng
Với giá trị nào của m thi hai bất phương trình tương đương ?
(a-1)x -a + 3>0 và (a+1)x -a + 2 >0
A.a=1 B. a = 5 C. a=-1 D. -1<a<1
bạn tự kl nhaaa
a, \(\left(x-2\right)\left(x+8\right)>x\left(x+2\right)\)
\(\Leftrightarrow x^2+6x-16>x^2+2x\Leftrightarrow4x-16>0\Leftrightarrow-16>-4x\Leftrightarrow x>4\)
b, \(2\left(x-1\right)-12< 0\Leftrightarrow2x-2-12< 0\Leftrightarrow-14< -2x\Leftrightarrow x< 7\)
a) Ta có: \(\left\{{}\begin{matrix}\dfrac{5}{x-1}+\dfrac{1}{y-1}=10\\\dfrac{1}{x-1}-\dfrac{3}{y-1}=18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{x-1}+\dfrac{1}{y-1}=10\\\dfrac{5}{x-1}-\dfrac{15}{y-1}=90\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{16}{y-1}=-80\\\dfrac{1}{x-1}-\dfrac{3}{y-1}=18\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y-1=\dfrac{-1}{5}\\\dfrac{1}{x-1}=18+\dfrac{3}{y-1}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{4}{5}\\x-1=\dfrac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=\dfrac{4}{5}\end{matrix}\right.\)
Chọn đáp án D