Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số túi nhiều nhất có thể chia là 6 túi
Khi đó, mỗi túi có 7 bi đỏ và 5 bi xanh
Giả sử trong 4 viên đó có 4 viên đỏ
=>Có \(C^4_6=15\)
=>\(n\left(\overline{A}\right)=15\)
\(n\left(\Omega\right)=C^4_{15}=1365\)
=>\(P_A=1-\dfrac{15}{1365}=\dfrac{90}{91}\)
a: Số cách chọn là:
\(C^2_5\cdot C^1_4\cdot C^3_6+C^2_5\cdot C^2_4\cdot C^2_6=1700\left(cách\right)\)
b: Số cách chọn 9 viên bất kì là: \(C^9_{15}\left(cách\right)\)
Số cách chọn 9 viên ko có đủ 3 màu là:
\(C^9_9+C^9_{11}+C^9_{10}=66\left(cách\right)\)
=>Có 4939 cách
a, Lấy ngẫu nhiên 3 viên bi có \(C_{16}^3\)
\(\Rightarrow n\left(\Omega\right)=C^3_{16}\)
\(A"\) lấy ba bi có màu trắng "
\(\Rightarrow n\left(A\right)=C_7^3\)
\(\Rightarrow P\left(A\right)=\dfrac{C_7^3}{C_{16}^3}=\dfrac{1}{16}\)
b, B " Lấy 3 bi không có màu đỏ
TH1 : 3 viên màu trắng \(C_7^3\)
TH2 : 3 viên màu đen \(C_7^3\)
TH3 : 3 viên đủ 2 màu đen trắng : \(C_{13}^3-C_7^3-C_6^3\)
\(\Rightarrow n\left(B\right)=C_7^3+C_6^3+\left(C_{13}^3-C_7^3-C_6^3\right)=286\)
\(\Rightarrow P\left(B\right)=\dfrac{286}{C_{16}^3}=\dfrac{143}{280}\)
Số cách lấy ra là:
\(C^1_3\cdot C^3_9+C^2_3\cdot C^2_9+C^3_3\cdot C^1_9=369\left(cách\right)\)