K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2015

a) Tứ giác ABCD có AB = CD, AD = BC nên là hình bình hành.

Tứ giác AICK có AK // IC, AK = IC nên là hình bình hành.

Do đó AI // CK

b) ∆DCN có DI = IC, IM // CN.

(vì AI // CK) nên suy ra DM = MN

Chứng minh tương tự đối với ∆ABM ta có MN = NB.

Vậy DM = MN = NB


 

29 tháng 9 2015

a) Tứ giác ABCD là hình bình hành => AB//CD 
mà AK=1/2AB(gt)
      IC=1/2DC(gt)  
nên tứ giác ABCD là hình bình hành (tứ giác có một cặp cạnh đối vừa song song vừa bằng nhau).

Do đó AI // CK(hai cạnh đối của hình bình hành)

b) ∆DCN có DI = IC(gt)
                   IM // CN(IA//KC,M thuộc AI,N thuộc KC)
 vậy M là trung điểm của DN=>DM = MN(1)

Xét ∆ABM ta có AK=KB(gt)
                        NK//MK(AI//KC,M thuộc AI,N thuộc KC) => N là trung điểm của MB=> NM=NB (2)

từ (1)+(2)=> DM = MN = NB


 

6 tháng 12 2016

Bài 16. Giải thích vì sao diện tích của tam giác được tô đậm trong các hình 128,129, 130 bằng nửa diện tích hình chữ nhật tương ứng:

Hướng dẫn giải:

Ở mỗi hình 128, 129, 130; hình tam giác và hình chữ nhật đều có cùng đáy a và cùng chiều cao h nên diện tích của tam giác bằng nửa diện tích hình chữ nhật tương ứng.

tk nha bạn

thank you bạn

 

26 tháng 2 2020

Giải bài 58 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8Giải bài 58 trang 92 SGK Toán 8 Tập 2 | Giải toán lớp 8

Chúc bạn học tốt~~

26 tháng 2 2020

A B C K H I

a) Xét hai Δvuông HBC và ΔKCB

∠BCH = ∠CBK (Δ ABC cân tại A) BC cạnh chung

⇒ ΔHBC = ΔKCB (cạnh huyền, góc nhọn)

⇒ CH = BK

b) Ta có: AB = AC (ΔABC cân tại A) và CH = BK

- Quảng cáo -

AK = AB – BK và AH = AC – CH ⇒ AK = AH

⇒ AK/AB = AH/AC ⇒ KH//BC

c) Kẻ đường cao AI của Δ ABC và xét Δ IAC

ΔHBC có ∠ACI = ∠BCH

⇒ ΔIAC ∽ ΔHBC(g.g) ⇒ AC/BC = IC/HC ⇒ HC = IC.BC / AC = a2/2b

Ta có : \(KH//BC\Rightarrow\frac{KH}{BC}=\frac{AH}{AC}\)

\(\Rightarrow KH=\frac{AH.BC}{AC}=\frac{\left(AC-HC\right).BC}{AC}\)

\(\Rightarrow KH=\left(b-\frac{a^2}{2b}\right)\frac{a}{b}=a-\frac{a^3}{2b^2}\)

7 tháng 8 2016

Ta có MD // AE (vì MD // AB)

        ME //AD (vì ME // AC)

Nên AEMD là hình bình hành, I là trung điểm của DE nên I cũng là trung điểm của AM, do đó A đối xứng với M qua I

7 tháng 8 2016

GT: Cho hình 82, trong đó MD // AB, ME // AC

KL: Chứng minh A đối xứng với M qua I

                                 GIẢI:

Ta có: MD // AE (vì MD // AB)

         ME // AD (vì ME // AC)

Nên AEMD là hình bình hành, I là trung điểm của DE nên I cũng là trung điểm của AM, do đó A đối xứng với M qua I