Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường thẳng xy cắt đường tròn (O;7) tại 2 điểm.Khoảng cách d từ O đến xy thuộc khoảng [a;b). Vậy b =
a=0 ( khi xy đi qua tâm)
b=7 ( khi xy là tiếp tuyến nhưng giá trị này không nhận)
AB </ 2R
+ AB =2R => d =a =0
+ AB < 2R=> d =b=\(\sqrt{R^2-\left(\frac{AB}{2}\right)^2}>\sqrt{R^2-\left(\frac{2R}{2}\right)^2}=0\)
Đường thẳng xy cắt đường tròn (O;7) tại 2 điểm.Khoảng cách d từ O đến xy thuộc khoảng [a;b). Vậy b =
Dễ thấy :Tam giác OAB ~Tam giác OCD
=> AB/DC = OB/OD = OB.OD/OD^2 = AO^2/OD^2 (Hệ thức lượng trong tam giác)
=> AO/OD = căn(AB/CD)= căn(18/32) = 3/4
Ta có : tanADO = AO/DO = AB/AD
=> AB/AD = 3/4 <=> AD = 4AB/3 = 18.4/3 = 24 (cm)
co AD,DC=>AC