Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có \(VT\)ko âm với mọi \(x,y,z\in Z\)
\(\Rightarrow\hept{\begin{cases}\left|x\right|=0\\\left|y\right|=0\\\left|z\right|=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=0\\y=0\\z=0\end{cases}}\)
Vậy x = 0 ; y = 0 ; z = 0
-2,-1,0,1,2,3
cn lại tự giải(tại đánh lộn xà lộn xộn ai bt đường mà tl)
| x - 5 | = 7
=> \(\orbr{\begin{cases}\left|x-5\right|=7\\\left|x-5\right|=-7\end{cases}}\)\(\orbr{\begin{cases}x=7+5\\x=-7+5\end{cases}}\)\(\orbr{\begin{cases}x=12\\x=-2\end{cases}}\)
Vậy bài toán có 2 kết quả \(x\)đô la :\(x=12;x=-2\)
\(|x-5|=7\)
\(\Rightarrow\orbr{\begin{cases}x-5=7\\x-5=-7\end{cases}\Rightarrow\orbr{\begin{cases}x=12\\x=-2\end{cases}}}\)
Vì |a| = +-a và |b| = +-b => |a| : |b| = (+-a) : (+-b) = +-(a:b)
Mà a chia hết cho b => a : b = k ( k thuộc Z )
=> |a| : |b| = +-k thuộc Z => |a| chia hết cho |b|
Ta có: \(\left|b\right|\ge0\left(\forall b\in Z\right)\)
Mà ở đây \(\left|b\right|=-12\)
\(\Rightarrow b\in\varnothing\) (Không có giá trị của b thỏa mãn)
Bạn gì đó ơi!! Giá trị tuyệt đối không là số âm đâu. Chắc bạn có ý là Tìm số nguyên b biết |b|=12
|b|=12\(\Rightarrow b=\pm12\)
|-125| - |x|
|x| = (-6).(-20)
|x| = 120
|-125| - |-120|
= 125 - 120
= 5
giá trị tuyệt đối là khoảng cách từ 0 đến số đó
vd |5|=5
hoặc |-5|=5
và nên nhớ trị tuyệt đối của một số luôn lớn hơn hoặc bằng 0
thanks!cool queen!