K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ha=9; hb=12; hc=16

=>hc*9=ha*16=hb*12

=>hc/16=ha/9=hb/12

=>Haitam giác này đồng dạng 

b: ha=4; hb=5; hc=6

=>ha*6=24; hb*5=25; ha*4=24

=>Hai tam giác này ko đồng dạng

Câu 18: D

Câu 19: C

Câu 20: B

Câu 21: C

11 tháng 2 2022

18. Chọn D

19. Chọn C

20. Chọn B

21. Chọn C

28 tháng 12 2020

D 4,8 cm

Cách làm là

Xét tam gíac vuông có

\(6^2\)+\(8^2\)= 36+ 64= 100=\(10^2\)( Định lí pytago)

Ta có diện tích tam giác vuông là

6 x 8= đg cao x 10(cạnh huyền)

48 \(cm^2\)   = đg cao x 10

48 : 10= đg cao

4,8      = đg cao

Vậy đg cao là 4,8 cm

Like nha bnok

7 tháng 5 2023

Cách làm là

Xét tam gíac vuông có

6262+8282= 36+ 64= 100=102102( Định lí pytago)

Ta có diện tích tam giác vuông là

6 x 8= đg cao x 10(cạnh huyền)

48 cm2��2   = đg cao x 10

48 : 10= đg cao

4,8      = đg cao

Vậy đg cao là 4,8 cm

23 tháng 4 2023

a. Xét ΔABC và ΔHBA :

      \(\widehat{A}\) = \(\widehat{H}\) = 900 (gt)

       \(\widehat{B}\) chung

\(\Rightarrow\) ΔABC \(\sim\) ΔHBA (g.g)

b. Xét ΔABC vuông tại A

Theo định lý Py - ta - go ta có:

  BC2 = AB2 + AC2

  BC2 = 62 + 82

\(\Rightarrow\) BC2 = 100

\(\Rightarrow\) BC = \(\sqrt{100}\) = 10 cm

Ta có: ΔABC \(\sim\) ΔHBA 

  \(\dfrac{AH}{CA}\) = \(\dfrac{BC}{BA}\) 

\(\Rightarrow\) \(\dfrac{AH}{8}\) = \(\dfrac{10}{6}\) 

\(\Rightarrow\) AH = 13,3 cm

\(\dfrac{BH}{BA}\) = \(\dfrac{BC}{BA}\) 

\(\Rightarrow\) \(\dfrac{BH}{6}\) = \(\dfrac{10}{6}\) 

\(\Rightarrow\) BH = 10 cm

c. Xét  ΔAIH và ΔBAC :

  \(\widehat{AIH}\) = \(\widehat{BAC}\) = 900

Ta có: \(\widehat{IAH}\) = \(\widehat{ACB}\)  (phụ thuộc \(\widehat{HAC}\) )

\(\Rightarrow\) ΔAIH \(\sim\) ΔBAC (g.g)

 \(\Rightarrow\) \(\dfrac{AI}{IH}\) = \(\dfrac{AC}{AB}\) 

 \(\Rightarrow\)\(\dfrac{AI}{AK}\) = \(\dfrac{AC}{AB}\) (vì AKIH là HCN)

\(\Rightarrow\) AI . AB = AK. AC(đpcm)

23 tháng 4 2023

a) Xét ΔABC và ΔHBA ta có:

\(\widehat{B}\) chung

\(\widehat{BAC}=\widehat{BHA}=90^0\)

ΔABC ΔHBA

b) Xét ΔABC vuông tại A, áp dụng định lí pytago ta có:

\(BC^2=AB^2+AC^2\)

         \(=6^2+8^2\)

         \(=100\)

\(\Rightarrow BC=\sqrt{100}=10\left(cm\right)\)

Vì ΔABC ∼ ΔBHA(cmt)

\(\Rightarrow\dfrac{AB}{BH}=\dfrac{AC}{AH}=\dfrac{BC}{AB}hay\dfrac{6}{BH}=\dfrac{8}{AH}=\dfrac{10}{6}=\dfrac{5}{3}\)

Suy ra: \(AH=\dfrac{8.3}{5}=4,8\left(cm\right)\)

              \(BH=\dfrac{6.3}{5}=3,6\left(cm\right)\)