Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét 2 tam giác BME và tam giác AHC
có \(\widehat{BME}=\widehat{AHC}=90^0\)
\(\widehat{ABC}chung\)
nên 2 tam giác BME và tam giác AHC đồng dạng với nhau
b)
xét tam giác ABH
có AE là phân giác của góc BAH
nên \(\widehat{MAE}=\widehat{HAE}\)
có \(\widehat{MAE}+\widehat{CAE}=90^0\)
\(\widehat{HAE}+\widehat{CEA}=90^0\)
suy ra \(\widehat{CAE}=\widehat{CEA}\)do đó tam giác AEc cân tại C
c)
xét tam giác AHC có
AD là tia phân giác của góc HAC
nên \(\frac{HD}{CD}=\frac{AH}{AC}\Rightarrow AH\cdot CD=DH\cdot AC\)
lại có AC = EC
nên \(AH\cdot CD=EC\cdot AC\)
d)
chứng minh tương tự câu b
ta có tam giác ABD cân tại B
suy ra AB = BD
mà AC = EC
nên AB + AC = BD + EC = BD + CD + ED = BC + DE
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: Xét ΔEDC vuông tại E và ΔHDA vuông tại H có
góc EDC=góc HDA
=>ΔEDC đồng dạng với ΔHDA
=>DE/DH=DC/DA=EC/HA
=>DC*HA=DA*EC
c: DE/DH=DC/DA
=>DE/DC=DH/DA
=>ΔDEH đồng dạng với ΔDCA