Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1
(x+2/1010)+(x+2/1111)=(x+2/1212)+(x+2/1313)
=>(x+2/1010)+(x+2/1111)-(x+2/1212)-(x-2/1313)=0
(x+2).[(1/1010)+(1/1111)-(1/1212)-(1/1313)]
Vì [(1/1010)+(1/1111)-(1/1212)-(1/1313) khác 0
=>x+2=0
=>x=-2
=> x+2/10^10+x+2/11^11-x+2/12^12-x+2/13^13=0
=>(x+2).(1/10^10+1/11^11-1/12^12-1/13^13)=0
Mà 1/10^10>1/11^11>1/12^12>1/13^13
=>1/10^10+1/11^11-1/12^12-1/13^13 khác 0
=>x+2=0=>x=-2
Tick nhé
=>\(\frac{x+2}{10^{10}}+\frac{x+2}{11^{11}}-\frac{x+2}{12^{12}}-\frac{x+2}{13^{13}}=0\)
=>\(\left(x+2\right).\left(\frac{1}{10^{10}}+\frac{1}{11^{11}}-\frac{1}{12^{12}}-\frac{1}{13^{13}}\right)=0\)
vì \(\frac{1}{10^{10}}+\frac{1}{11^{11}}-\frac{1}{12^{12}}-\frac{1}{13^{13}}\ne0\)
=>x+2=0 =>x=-2
Vậy x=-2
\(\frac{x+2}{10^{10}}+\frac{x+2}{11^{11}}=\frac{x+2}{12^{12}}+\frac{x+2}{13^{13}}\)
=> \(\frac{x+2}{10^{10}}+\frac{x+2}{11^{11}}-\frac{x+2}{12^{12}}-\frac{x+2}{13^{13}}=0\)
=> \(\left(x+2\right)\left(\frac{1}{10^{10}}+\frac{1}{11^{11}}-\frac{1}{12^{12}}-\frac{1}{13^{13}}\right)=0\)
Vì \(\frac{1}{10^{10}}+\frac{1}{11^{11}}\ne\frac{1}{12^{12}}+\frac{1}{13^{13}}\Rightarrow\frac{1}{10^{10}}+\frac{1}{11^{11}}-\frac{1}{12^{12}}-\frac{1}{13^{13}}\ne0\)
=> \(x+2=0\Rightarrow x=-2\)
=>
\(\frac{x+2}{10^{10}}+\frac{x+2}{10^{11}}-\frac{x+2}{12^{12}}-\frac{x+2}{13^{13}}=0\)
=>\(\left(x+2\right)\left(\frac{1}{10^{10}}+\frac{1}{10^{11}}-\frac{1}{12^{12}}-13^{13}\right)=0\)
vì \(\frac{1}{10^{10}}+\frac{1}{10^{11}}-\frac{1}{12^{12}}-\frac{1}{13^{13}}\ne0\)
=>x+2=0=>x=-2