Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi quãng đường xe thứ nhất và xe thứ 2 đi được từ chỗ xuất phát đến chỗ gặp nhau là x (km) và y(km) (x,y>0)
=> x-y =40
Theo bải ra ta có vận tốc và thời gian của một vật chuyển động đều trên cùng một quãng đường là hai đại lượng tỉ lệ nghịch
=> Tỉ số vận tốc của xe thứ nhất và xe thứ hai là \(\frac{v_1}{v_2}=\frac{5}{4}\)
Theo bài ra ta có quãng đường và vận tốc của 2 xe từ chỗ khởi hành đến chỗ gặp nhau là 2 đại lượng tỉ lệ thuận
=> \(\frac{x}{y}=\frac{v_1}{v_2}=\frac{5}{4}\)
\(\Rightarrow\frac{x}{5}=\frac{y}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{x}{5}=\frac{y}{4}=\frac{x-y}{5-4}=\frac{40}{1}=40\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{5}=40\\\frac{y}{4}=40\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=40.5=200\\y=40.4=160\end{cases}}\) ( thỏa mãn x,y >0)
=> Quãng đường AB dài 200+160 =360 (km)
Vậy quãng đường AB dài 360 (km)
Học tốt
⇒ \(v_1=\dfrac{1}{2}v_2\)
\(\Rightarrow v_1=v_2-v_1=54\dfrac{km}{h}\)
\(AB=v_1\times6=54\times6=324km\)