K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2017

Deo biet

Bài 1: Tìm số nguyên n để phân số sau có giá trị là một số nguyên và tính giá trị đó a. \(A=\frac{3n+9}{n-4}\)                                     b.\(B=\frac{6n+5}{2n-1}\)Bài 2: Tìm số nguyên x và y biết rằng:                     \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)Bài 3:Viết tất cả các số nguyên có giá trị tuyệt đối nhỏ hơn 20 theo thứ tự tùy ý.Lấy mỗi số trừ đi số thứ tự của nó ta được một hiệu...
Đọc tiếp

Bài 1: Tìm số nguyên n để phân số sau có giá trị là một số nguyên và tính giá trị đó

 a. \(A=\frac{3n+9}{n-4}\)                                     b.\(B=\frac{6n+5}{2n-1}\)

Bài 2: Tìm số nguyên x và y biết rằng: 

                    \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)

Bài 3:Viết tất cả các số nguyên có giá trị tuyệt đối nhỏ hơn 20 theo thứ tự tùy ý.Lấy mỗi số trừ đi số thứ tự của nó ta được một hiệu .Tổng của tất cả các hiệu đó bằng bao nhiêu ?

Bài 4:Thực hiện các phép tính:

a.\(\frac{(\frac{3}{10}-\frac{4}{15}-\frac{7}{20})\times\frac{5}{19}}{(\frac{1}{14}+\frac{1}{7}-\frac{-3}{35})\times\frac{-4}{3}}\) 

b.\(\frac{\left(1+2+3+...+100\right)\times\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right)\times\left(6,3\times12-21\times3,6\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{100}}\)

c.\(\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{\frac{4}{9}-\frac{4}{7}-\frac{4}{11}}+\frac{\frac{3}{5}-\frac{3}{25}-\frac{3}{125}-\frac{3}{625}}{\frac{4}{5}-\frac{4}{25}-\frac{4}{125}-\frac{4}{625}}\)

2
18 tháng 8 2020

các bạn giúp mình với mình đang cần đáp án gấp

18 tháng 8 2020

1) a.Ta có \(A=\frac{3n+9}{n-4}=\frac{3n-12+21}{n-4}=\frac{3\left(n-4\right)}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\)

Vì \(3\inℤ\Rightarrow\frac{21}{n-4}\inℤ\Rightarrow21⋮n-4\Rightarrow n-4\inƯ\left(21\right)\)

=> \(n-4\in\left\{1;-1;3;-3;7;-7;21;-21\right\}\)

=> \(n\in\left\{5;3;8;1;11;-3;25;-17\right\}\)

b) Ta có B = \(\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=\frac{3\left(2n-1\right)+8}{2n-1}=3+\frac{8}{2n-1}\)

Vì \(3\inℤ\Rightarrow\frac{8}{2n-1}\inℤ\Rightarrow2n-1\inƯ\left(8\right)\Rightarrow2n-1\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\)(1)

lại có với mọi n nguyên => 2n \(⋮\)2 => 2n - 1 không chia hết cho 2 (2)

Kết hợp (1) ; (2) => \(2n-1\in\left\{1;-1\right\}\Rightarrow n\in\left\{1;0\right\}\)

2) Ta có : \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)

=> \(\frac{20+xy}{4x}=\frac{1}{8}\)

=> 4x = 8(20 + xy)

=> x = 2(20 + xy)

=> x = 40 + 2xy

=> x - 2xy = 40

=> x(1 - 2y) = 40

Nhận thấy : với mọi y nguyên => 1 - 2y là số không chia hết cho 2 (1)

mà x(1 - 2y) = 40

=> 1 - 2y \(\inƯ\left(40\right)\)(2)

Kết hợp (1) (2) => \(1-2y\in\left\{1;5;-1;-5\right\}\)

Nếu 1 - 2y = 1 => x = 40

=> y = 0 ; x = 40

Nếu 1 - 2y = 5 => x = 8

=> y = -2 ; x = 8 

Nếu 1 - 2y = -1 => x = -40

=> y = 1 ; y = - 40

Nếu 1 - 2y = -5 => x = -8

=> y = 3 ; x =-8

Vậy các cặp (x;y) thỏa mãn là : (40 ; 0) ; (8; - 2) ; (-40 ; 1) ; (-8 ; 3)

4) \(\frac{\left(\frac{3}{10}-\frac{4}{15}-\frac{7}{20}\right).\frac{5}{19}}{\left(\frac{1}{14}+\frac{1}{7}-\frac{-3}{35}\right).\frac{-4}{3}}=\frac{-\frac{19}{60}.\frac{5}{19}}{\frac{21}{70}.\frac{-4}{3}}=\frac{-\frac{5}{60}}{\frac{2}{5}}=-\frac{5}{60}:\frac{2}{5}=-\frac{5}{24}\)

b) \(\frac{\left(1+2+3+...+100\right)\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right).\left(6,3.12-21.3,6\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{100}}\)

\(=\frac{\left(1+2+3+...+100\right)\left(\frac{1}{3}-\frac{1}{5}-\frac{1}{7}-\frac{1}{9}\right).0}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}=0\)

c) \(\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{\frac{4}{9}-\frac{4}{7}-\frac{4}{11}}+\frac{\frac{3}{5}-\frac{3}{25}-\frac{3}{125}}{\frac{4}{5}-\frac{4}{25}-\frac{4}{125}}=\frac{\frac{1}{9}-\frac{1}{7}-\frac{1}{11}}{4\left(\frac{1}{9}-\frac{1}{7}-\frac{1}{11}\right)}+\frac{3\left(\frac{1}{5}-\frac{1}{25}-\frac{1}{125}\right)}{4\left(\frac{1}{5}-\frac{1}{25}-\frac{1}{125}\right)}\)

\(=\frac{1}{4}+\frac{3}{4}=1\)

16 tháng 9 2016

63463

16 tháng 9 2016

la sao bn

11 tháng 10 2016

Bài 1,A=\(\frac{644}{193}\)

12 tháng 10 2016

giải thích cách làm nựa nha bạn

Bài 1 Tính A=\(\left(\frac{1}{4}-1\right)\cdot\left(\frac{1}{9}-1\right)\cdot\left(\frac{1}{16}-1\right)\cdot...\cdot\left(\frac{1}{100}-1\right)\cdot\left(\frac{1}{121}-1\right)\)Bài 2Cho A = \(\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+...+\frac{1}{37\cdot38}\)B= \(\frac{1}{20\cdot38}+\frac{1}{21\cdot37}+...+\frac{1}{38\cdot20}\)CMR \(\frac{A}{B}\)là 1 số nguyênBài 3a) Cho S = 17+17^2+17^3+...+17^18 . Chứng minh rằng S chia hết cho 307b) Cho đa thức...
Đọc tiếp

Bài 1 

Tính A=\(\left(\frac{1}{4}-1\right)\cdot\left(\frac{1}{9}-1\right)\cdot\left(\frac{1}{16}-1\right)\cdot...\cdot\left(\frac{1}{100}-1\right)\cdot\left(\frac{1}{121}-1\right)\)

Bài 2

Cho A = \(\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+...+\frac{1}{37\cdot38}\)

B= \(\frac{1}{20\cdot38}+\frac{1}{21\cdot37}+...+\frac{1}{38\cdot20}\)

CMR \(\frac{A}{B}\)là 1 số nguyên

Bài 3

a) Cho S = 17+17^2+17^3+...+17^18 . Chứng minh rằng S chia hết cho 307

b) Cho đa thức f(x)=\(a_4x^4+a_3x^3+a_2x^2+a_1x+a_0\)

Biết rằng : f(x)=f(-1);f(2)=f(-2)

Chứng minh : f(x)=f(-x) với mọi x

Cho 4 số không âm a, b, c, d thỏa mãn a+b+c+d=1. Gọi S là tổng các giá trị tuyệt đối của hiệu từng cặp số có được từ 4 số này. S có thể đạt được giá trị lớn nhất bằng bao nhiêu?

Bài 4 

Cho tam giác ABC (ab>ac), m là trung điểm của bc. Đường thẳng đi qua m vuông góc với tia phân giác của góc a tại h cắt cạnh ab, ac lần lượt tại e và f. Chứng minh

a) 2BME=ACB-B( Đây là các góc)

b) \(\frac{FE^2}{4}+AH^2=AE^2\)

c) BE=CF

1
5 tháng 2 2020

\(A=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)...\left(\frac{1}{121}-1\right)\)

\(-A=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{121}\right)\)

\(-A=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot...\cdot\frac{120}{121}\)

\(-A=\frac{1\cdot3\cdot2\cdot4\cdot3\cdot5\cdot...\cdot10\cdot12}{2\cdot2\cdot3\cdot3\cdot4\cdot4\cdot...\cdot11\cdot11}\)

\(-A=\frac{\left(1\cdot2\cdot3\cdot...\cdot10\right)\left(3\cdot4\cdot5\cdot...\cdot12\right)}{\left(2\cdot3\cdot4\cdot...\cdot11\right)\left(2\cdot3\cdot4\cdot...\cdot11\right)}\)

\(-A=\frac{1\cdot12}{11\cdot2}=\frac{6}{11}\)

\(A=-\frac{6}{11}\)

\(B=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{37\cdot38}\)

\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{37}-\frac{1}{38}\)

\(B=1-\frac{1}{38}=\frac{37}{38}\)

24 tháng 3 2019

  1. ​​fddfssdfdsfdssssssssssssssffffffffffffffffffsssssssssssssssssssfsssssssssssssssssssssssfffffffffffffff
24 tháng 3 2019

Ez lắm =)

Bài 1:

Với mọi gt \(x,y\in Q\) ta luôn có: 

\(x\le\left|x\right|\) và \(-x\le\left|x\right|\) 

\(y\le\left|y\right|\) và \(-y\le\left|y\right|\Rightarrow x+y\le\left|x\right|+\left|y\right|\) và \(-x-y\le\left|x\right|+\left|y\right|\)

Hay: \(x+y\ge-\left(\left|x\right|+\left|y\right|\right)\)

Do đó: \(-\left(\left|x\right|+\left|y\right|\right)\le x+y\le\left|x\right|+\left|y\right|\)

Vậy: \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)

Dấu "=" xảy ra khi: \(xy\ge0\)