Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Áp dụng định lý pitago vào tam giác vuông ABC, có:
BC2=AB2+AC2BC2=AB2+AC2
⇒BC=√62+82=√100=10cm⇒BC=62+82=100=10cm
b.Xét tam giác vuông ABH và tam giác vuông ADH, có:
HD = HB ( gt )
AH: cạnh chung
Vậy tam giác vuông ABH = tam giác vuông ADH ( 2 cạnh góc vuông )
=> AB = AD ( 2 cạnh tương ứng )
bn tham khảo
a,Áp dụng Đ. L. py-ta-go, có:
BC2=AC2+AB2
=>BC2=82+62
=64+36.
=100.
=>BC=10cm.
b, Xét tg AHB và tg AHD, có:
AH chung
góc AHB= góc AHD(=90o)
HB= DH(gt)
=>tg AHB= tg AHD(2 cạnh góc vuông)
=>AB= AD(2 cạnh tương ứng)
c, Kẻ E với C, tạo thành cạnh EC.
Kẻ E với B, tạo thành cạnh EB.
Ta có: góc BHA=90o, suy ra: góc BHA= góc EHC(2 góc đối đỉnh)
=>góc BHA= góc EHC(=90o)
=>ED vuông góc với AC(đpcm)
a, Ta có ∆ABC cân ở A(gt)
AH\(\perp\) BC=>AH là đường cao
(1)=>AH đồng thời là trung tuyến=>HB=HC
(2)=>AH đồng thời là phân giác=>góc BAH=góc CAH
b, Áp dụng định lí pyta go cho ∆ABH ta có
AB2=AH2+BH2 =>52=42+HB2=>HB=√52--42=3
d, Xét ∆DHB và ∆EHC có
Góc HDB=góc HEC =90°(HD\(\perp\) AB, HE vuông góc ACgt)
Góc B=góc C ( tam giác ABC cân tai A gt)
HB =HC (cmt)
=> ∆DHB=∆EHC(ch-cgv)=>HD=HE=>∆HDE cân tại H