Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì \(\left|x+\frac{2}{3}\right|\ge0\)
\(\Rightarrow\)\(2-\left|x+\frac{2}{3}\right|\le2\)
\(\Rightarrow\)Amax = 2 \(\Leftrightarrow2-\left|x+\frac{2}{3}\right|=2\Leftrightarrow\left|x+\frac{2}{3}\right|=0\Leftrightarrow x=0-\frac{2}{3}=\frac{-2}{3}\)
tương tự như trên
1/a) Ta có: \(A=x^4+\left(y-2\right)^2-8\ge-8\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)
Vậy GTNN của A = -8 khi x=0, y=2.
b) Ta có: \(B=|x-3|+|x-7|\)
\(=|x-3|+|7-x|\ge|x-3+7-x|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le7\end{cases}}\Rightarrow3\le x\le7\)
Vậy GTNN của B = 4 khi \(3\le x\le7\)
2/ a) Ta có: \(xy+3x-7y=21\Rightarrow xy+3x-7y-21=0\)
\(\Rightarrow x\left(y+3\right)-7\left(y+3\right)=0\Rightarrow\left(x-7\right)\left(y+3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=7\\y=-3\end{cases}}\)
b) Ta có: \(\frac{x+3}{y+5}=\frac{3}{5}\)và \(x+y=16\)
Áp dụng tính chất bằng nhau của dãy tỉ số, ta có:
\(\frac{x+3}{y+5}=\frac{3}{5}\Rightarrow\frac{x+3}{3}=\frac{y+5}{5}=\frac{x+y+8}{8}=\frac{16+8}{8}=\frac{24}{8}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x+3}{3}=3\Rightarrow x+3=9\Rightarrow x=6\\\frac{y+5}{5}=3\Rightarrow y+5=15\Rightarrow y=10\end{cases}}\)
Bài 3: đề không rõ.
Bài 1:\(a,A=x^4+\left(y-2\right)^2-8\)
Có \(x^4\ge0;\left(y-2\right)^2\ge0\)
\(\Rightarrow A\ge0+0-8=-8\)
Dấu "=" xảy ra khi \(MinA=-8\Leftrightarrow x=0;y=2\)
\(b,B=\left|x-3\right|+\left|x-7\right|\)
\(\Rightarrow B=\left|x-3\right|+\left|7-x\right|\)
\(\Rightarrow B\ge\left|x-3+7-x\right|\)
\(\Rightarrow B\ge\left|-10\right|=10\)
Dấu "=" xảy ra khi \(MinB=10\Leftrightarrow3\le x\le7\Rightarrow x\in\left(3;4;5;6;7\right)\)
Bài làm:
a) \(P=4-\left(x-2\right)^{32}\le4\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(x-2\right)^{32}=0\Rightarrow x=2\)
b) \(Q=20-\left|3-x\right|\le20\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left|3-x\right|=0\Rightarrow x=3\)
c) \(C=\frac{5}{\left(x-3\right)^2+1}\le\frac{5}{1}=5\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(x-3\right)^2=0\Rightarrow x=3\)
a) P = 4 - (x - 2)32
Do \(\left(x-2\right)^{32}\ge0\forall x\)
=> \(P=4-\left(x-2\right)^{32}\le4\)
Dấu " = " xảy ra khi và chỉ khi \(\left(x-2\right)^{32}=0\)hay khi x = 2
Vậy GTLN của P là 4 khi x = 2
b) Q = 20 - | 3 - x|
Do \(\left|3-x\right|\ge0\)
=> \(Q=20-\left|3-x\right|\le20\)
Dấu " = " xảy ra khi | 3 - x| = 0 => x = 3
Vậy GTLN của Q bằng 20 khi x = 3
c) Do \(\left(x-3\right)^2\ge0\)
=> \(\left(x-3\right)^2+1\le1\)
=> \(\frac{5}{\left(x-3\right)^2+1}\le\frac{5}{1}=5\)
Dấu " = " xảy ra khi (x - 3)2 = 0 => x = 3
Vậy GTLN của C = 5 khi x = 3
P/s : k chắc câu c