K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2016

hình vẽ đấy nhé

GIAI

a ) xét tam giác AMB và tam giác CMN có

AM = MC ( M là trung điểm của AC )

góc AMB = goc CMN ( đối đỉnh )

MB = MN ( M là trung điểm của BN )

=> tam giác AMB = tam giác CMN ( c.g.c)

=> AB = CN ( 2 cạnh tương ứng )

=> góc BAM = NCM = 90 độ ( 2 góc tương ứng )

=> CN vuông góc với AC (dpcm )

b ) chúng minh tương tự

=> tam giác ANM = tam giác CBM ( c.g.c )

=> AN = BC ( 2 cạnh tương ứng )

=> góc ANM = góc CBM ( 2 góc tương ứng )

mà 2 góc ở vị trí so le trong của 2 đường thẳng AN và BC

=> AN song song BC ( dpcm)

28 tháng 9 2017

Hình bạn tự vẽ nhé

Ta có AB = AC

=> \(\Delta\)ABC cân ở A

mà M và N lần lượt là trung điểm của AB và AC

=> AN = AM = CN = BM luôn

Xét \(\Delta NAB\)\(\Delta MAC\) có:

\(AM=AN\)

\(\widehat{A}\) chung

\(AB=AC\)

=> 2 tam giác này bằng nhau \(\left(c.g.c\right)\)

=> \(BN=CM\)\(\widehat{BNC}=\widehat{CMB}\)

làm gộp lại nhé bn

1 tháng 3 2021

a) Chứng minh CM=BN :AM = CN (gt)AC = BC ( cạnh tam giác đều)CAM^ = BCN^ = 60*=> Δ ACM = Δ CBN (c.g.c)=> CM = BN

b) Chứng minh góc BOC không đổi khi M và N di động trên hai cạnh AB và AC thỏa mãn AM=CNΔ ACM = Δ CBN => ACM^ = CBN^ => ABN^ = BCM^=> CBN^ + BCM^ = CBN^ + ABN^ = ABC^ = 60*=> BOC^ = 180* - (CBN^ + BCM^) = 180* - 60* = 120* không đổi

1 tháng 3 2021

Bớt buff đi bạn ơi :)