Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính tổng S=\(\frac{1+2+2^2+2^3+...+2^{2008}}{1-2^{2009}}\)
Làm giúp mk bài này nha!Cảm ơn mn nhiều:3
-1
mình ko chắc đâu đó nha,bài này mình chỉ làm có mấy lần à,sai thì cho mình xin lỗi nhé T_T
Tử = 1+2+2^2+2^3+...+2^2008
2Tử = 2+2^2+2^3+...+2^2009
=> 2Tử-Tử=2^2009-1
S= (2^2009-1)/(1-2^2009)=-1
ta có:2 tử(1+2+22+...+22008).2+
=2+22+23+...+22008+22009
2 tử - tử= tử
2+22+2^3+...+2^2008+2^2009-1+2+2^2+...+2^2008=2^2009-1
tử = 2^2009-1 mẫu = 1-2^2009 vậy s=-1
Lời giải:
Xét tử số:
$X=1+2+2^2+2^3+...+2^{2008}$
$2X=2+2^2+2^3+2^4+....+2^{2009}$
$\Rightarrow 2X-X=(2+2^2+2^3+2^4+....+2^{2009})-(1+2+2^2+...+2^{2008})$
$\Rightarrow X=2^{2009}-1$
$\Rightarrow S=\frac{X}{1-2^{2009}}=\frac{2^{2009}-1}{-(2^{2009}-1)}=-1$
tử là M mẫu là N ta dc
\(M=2008+\frac{2007}{2}+...+\frac{1}{2008}\)
\(=\left(1+...+1\right)+\frac{2007}{2}+...+\frac{1}{2008}\)
\(=\frac{2009}{2}+...+\frac{2009}{2008}+\frac{2009}{2009}\)
\(=2009\left(\frac{1}{2}+...+\frac{1}{2008}+\frac{1}{2009}\right)\)
vậy ta có
\(A=\frac{M}{N}=\frac{2009\left(\frac{1}{2}+...+\frac{1}{2008}+\frac{1}{2009}\right)}{\frac{1}{2}+...+\frac{1}{2008}+\frac{1}{2009}}\)\(=2009\)
Đặt \(A=1+2+2^2+2^3+...+2^{2008}\)
\(2A=2.\left(1+2+2^2+2^3+...+2^{2008}\right)\)
\(2A=2+2^2+2^3+...+2^{2009}\)\(2A-A=\left(2+2^2+2^3+...+2^{2009}\right)-\left(1+2+2^2+...+2^{2008}\right)\)
\(A=2^{2009}-1\)
\(\Rightarrow S=\frac{2^{2009}-1}{1-2^{2009}}\)
\(S=\frac{2^{2009}-1}{-\left(-1+2^{2009}\right)}=\frac{2^{2009}-1}{-\left(2^{2009}-1\right)}=-1\)
đặt tử =A,ta có:
tử=2A=2(1+2.2+2.22+...+2.22008)
=2.1+2.2+2.22+...+2.22008
=2+22+23+...+22009
2A-A=(2+22+23+...+22009)-(1+2+22+...+22008)
A=22009-1
thay A vào tử của S ta được:\(S=\frac{2^{2009}-1}{1-2^{2009}}=-1\)