K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2020

Ừ oke

18 tháng 11 2017

a) Rút gọn C = 3 2 ( x − 2 ) 2 ,  thay x = 3 tính được C = 3 2 .  

b) Rút gọn D = - ( x   –   y   +   z ) 2 , thay x = 17; y = 16; z = 1 tính được D = -4.

AH
Akai Haruma
Giáo viên
8 tháng 8 2020

Lời giải:

a)

$A=-(x^3y^5z^2):(-x^6y^9z^3)$

$=(x^3:x^6)(y^5:y^9)(z^2:z^3)$

$=x^{-3}y^{-4}z^{-1}=\frac{1}{x^3y^4z}=\frac{1}{1^3.(-1)^4.100}=\frac{1}{100}$

b)

$B=(\frac{3}{4}:\frac{-1}{2}).[(x-2)^3(2-x)]$

$=\frac{-3}{2}[-(x-2)^3(x-2)]=\frac{3}{2}(x-2)^4=\frac{3}{2}(3-2)^4=\frac{3}{2}$

c)

$x-y-z=17-16-1=0$

$\Rightarrow (x-y-z)^5=0$

$(-x+y-z)^3=(-17+16-1)^3=(-2)^3=-8$

$\Rightarrow C=0$

24 tháng 9 2019

a) Tìm được A = (x- y)(x + 5y).

Thay x = 4 và y = -4 vào A tìm được A = -128.

b) Tìm được B = 9 ( x   - 1 ) 2 .

Thay x = - 4 vào B tìm được B = 81 4 .  

c) Tìm được C = (x - y)(y - z)(x - z).

Thay x = 6,y = 5 và z = 4 vào C tìm được C = 2.

d) Thay 10 = x +1 vào D và biến đổi ta được D = -1.

26 tháng 12 2017

28 tháng 12 2017

a) Ta có: \(VT=\left(x-y-z\right)^2\)

\(=\left(x-y-z\right)\left(x-y-z\right)\)

\(=x^2-xy-xz-yx+y^2+yz-zx+zy+z^2\)

\(=x^2+y^2+z^2-2xy+2yz-2xz\)

=VP(đpcm)

b) Ta có: \(VT=\left(x+y-z\right)^2\)

\(=\left(x+y-z\right)\left(x+y-z\right)\)

\(=x^2+xy-xz+yx+y^2-yz-zx-zy+z^2\)

\(=x^2+y^2+z^2+2xy-2yz-2zx\)

=VP(đpcm)

c) Sửa đề: Chứng minh \(\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)=x^4-y^4\)

Ta có: \(VT=\left(x-y\right)\left(x^3+x^2y+xy^2+y^3\right)\)

\(=x^4+x^3y+x^2y^2+xy^3-x^3y-x^2y^2-xy^3-y^4\)

\(=x^4-y^4\)

=VP(đpcm)

d) Ta có: \(VT=\left(x+y\right)\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)\)

\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5\)

\(=x^5+y^5\)

=VP(đpcm)

20 tháng 7 2020

a, b, nhân vào là ra à

c, nghe cứ là lạ

d, cũng nhân là ra hà

\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5=x^5+y^5\)

28 tháng 7 2017

\(\frac{-15625}{6}\)nha bạn k mình nha