K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2021

Bài 5 : 

a, \(2x\left(x-3\right)+x-3=0\Leftrightarrow\left(2x+1\right)\left(x-3\right)=0\Leftrightarrow x=-\frac{1}{2};x=3\)

b, \(x\left(x+1\right)-x-1=0\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\Leftrightarrow x=\pm1\)

c, sửa đề  \(x^3-3x^2+x-3=0\Leftrightarrow x^2\left(x-3\right)+x-3=0\)

\(\Leftrightarrow\left(x^2+1>0\right)\left(x-3\right)=0\Leftrightarrow x=3\)

d, \(3x^2\left(2x-1\right)+1-4x^2=0\Leftrightarrow3x^2\left(2x-1\right)+\left(1-2x\right)\left(1+2x\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(3x^2-2x-1\right)=0\Leftrightarrow\left(2x-1\right)\left(3x+1\right)\left(x-1\right)=0\Leftrightarrow x=1;x=-\frac{1}{3};x=\frac{1}{2}\)

e, \(x^3+2x-x^2-2=0\Leftrightarrow x\left(x^2+2\right)-\left(x^2+2\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+2>0\right)=0\Leftrightarrow x=1\)

30 tháng 7 2021

x=1 nha

5 tháng 10 2020

a) \(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)=1\)

\(\Leftrightarrow\left(x^2+6x+9\right)-\left(x^2+4x-32\right)-1=0\)

\(\Leftrightarrow2x=-40\)

\(\Rightarrow x=-20\)

b) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-2\right)\left(x+2\right)=15\)

\(\Leftrightarrow x^3+27-x^3+4x=15\)

\(\Leftrightarrow4x=-12\)

\(\Rightarrow x=-3\)

c) \(\left(x-2\right)^2-\left(x+3\right)^2-4\left(x+1\right)=5\)

\(\Leftrightarrow\left(x^2-4x+4\right)-\left(x^2+6x+9\right)-\left(4x+4\right)=5\)

\(\Leftrightarrow-14x=14\)

\(\Rightarrow x=-1\)

5 tháng 10 2020

d) \(\left(2x-3\right)\left(2x+3\right)-\left(x-1\right)^2-3x\left(x-5\right)=-44\)

\(\Leftrightarrow4x^2-9-\left(x^2-2x+1\right)-\left(3x^2-15x\right)=-44\)

\(\Leftrightarrow17x=-34\)

\(\Rightarrow x=-2\)

e) \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=49\)

\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6x^2+12x+6=49\)

\(\Leftrightarrow24x=24\)

\(\Rightarrow x=1\)

25 tháng 4 2020

1.(x -5)^2 - 25 =0

=> (x - 5)^2 = 25

=> x - 5 = 5 hoặc x - 5 = -5

=> x = 10 hoặc x = 0

vậy_

2. (x -2)^3 =27

=> x - 2 = 3

=> x = 5

vậy_

3. 3(x -7) + 2x(x+2) = 2x^2

=> 3x - 21 + 2x^2 + 4x = 2x^2

=> 7x - 21 = 0

=> 7x = 21

=> x = 3

vậy_

4. (x^2 - 4) (x +8) =0

=> x^2 - 4 = 0 hoặc x + 8 = 0

=> x^2 = 4 hoặc x = -8

=> x = 2 hoặc x = -2 hoặc x = -8

vậy_

5. x^ 2 + 3x = 0

=> x(x + 3) = 0 

=> x = 0 hoặc x + 3 = 0

=> x = 0 hoặc x = -3

vậy_

6. 3x^3 - 3x = 0

=> 3x(x^2 - 1) = 0

=> 3x(x - 1)(x + 1) = 0

=> x = 0 hoặc x = 1 hoặc x = -1

vậy_

7. (x +1)^2 = ( 2x +3)^2

=> (x + 1 + 2x + 3)(x + 1 - 2x - 3) = 0

=> (3x + 3)(-x - 2) = 0

=> x = -1 hoặc x = -2

vậy_

Bài làm

1) ( x - 5 )2 - 25 = 0

<=> ( x - 5 - 5 )( x - 5 + 5 ) = 0

<=> x( x - 10 ) = 

<=> \(\orbr{\begin{cases}x=0\\x-10=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=10\end{cases}}}\)

Vậy S = { 0; 10 }

2) \(\left(x-2\right)^3=27\)

\(\Leftrightarrow\left(x-2\right)^3=3^3\)

\(\Leftrightarrow x-2=3\)

\(\Leftrightarrow x=5\)

Vậy x = 5 là nghiệm phương trình.

3) \(3\left(x-7\right)+2x\left(x+2\right)=2x^2\)

\(\Leftrightarrow3x+2x^2+4x-2x^2=21\)

\(\Leftrightarrow7x=21\)

\(\Leftrightarrow x=\frac{21}{7}=3\)

Vậy x = 3 là nghiệm phương trình

4) \(\left(x^2-4\right)\left(x+8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-4=0\\x+8=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2=\pm2\\x=-8\end{cases}}}\)

Vậy S = { 2; -2; -8 }

5) \(x^2+3x=0\)

\(\Leftrightarrow x\left(x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-3\end{cases}}}\)

Vậy S = { 0; -3 } 

6) \(3x^3-3x=0\)

\(\Leftrightarrow3x\left(x^2-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x=0\\x^2-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}}\)

Vậy S = { +1; 0 }

7) \(\left(x+1\right)^2=\left(2x+3\right)^2\)

\(\Leftrightarrow\left(x+1\right)^2-\left(2x+3\right)^2=0\)

\(\Leftrightarrow\left(x+1-2x-3\right)\left(x+1+2x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}-x-2=0\\3x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{4}{3}\end{cases}}}\)

Vậy S = { -2; -4/3 }

# Học tốt #

1 tháng 8 2020

Bài 1 :

a) \(3x\left(5x^2-2x-1\right)=3x\cdot5x^2+3x\left(-2x\right)+3x\left(-1\right)\)

\(=15x^3-6x^2-3x\)

b) \(\left(x^2-2xy+3\right)\left(-xy\right)\)

\(=x^2\left(-xy\right)-2xy\left(-xy\right)+3\left(-xy\right)\)

\(=-x^3y+2x^2y^2-3xy\)

c) \(\frac{1}{2}x^2y\left(2x^3-\frac{2}{5}xy-1\right)\)

\(=\frac{1}{2}x^2y\cdot2x^3+\frac{1}{2}x^2y\cdot\left(-\frac{2}{5}xy\right)+\frac{1}{2}x^2y\left(-1\right)\)

\(=x^5y-\frac{1}{5}x^3y^2-\frac{1}{2}x^2y\)

d) \(\frac{1}{2}xy\left(\frac{2}{3}x^2-\frac{3}{4}xy+\frac{4}{5}y^2\right)\)

\(=\frac{1}{2}xy\cdot\frac{2}{3}x^2+\frac{1}{2}xy\cdot\left(-\frac{3}{4}xy\right)+\frac{1}{2}xy\cdot\frac{4}{5}y^2\)

\(=\frac{1}{3}x^3y-\frac{3}{8}x^2y^2+\frac{2}{5}xy^3\)

e) \(\left(x^2y-xy+xy^2+y^3\right)\left(3xy^3\right)\)

\(x^2y\cdot3xy^3-xy\cdot3xy^3+xy^2\cdot3xy^3+y^3\cdot3xy^3\)

\(=3x^3y^4-3x^2y^4+3x^2y^5+3xy^6\)

1 tháng 8 2020

Bài 2 :

3(2x - 1) + 3(5 - x) = 6x - 3 + 15 - x = (6x - x) - 3 + 15 = 5x - 3 + 15

Thay x = -3/2 vào biểu thức trên ta có : \(5\cdot\left(-\frac{3}{2}\right)-3+15\)

\(=-\frac{15}{2}-3+15=\frac{9}{2}\)

b) 25x - 4(3x - 1) + 7(5 - 2x)

= 25x - 12x + 4  + 35 - 14x

= (25x - 12x - 14x) + 4 + 35 = -x + 4 + 35 = -x + 39

Thay \(x=2\)vào biểu thức trên ta có : -2 + 39 = 37

c) 4x - 2(10x + 1) + 8(x - 2)

= 4x - 20x - 2 + 8x - 16

= (4x - 20x + 8x) - 2 - 16 = -8x - 2 - 16 = -8x - 18

Thay x = 1/2 vào biểu thức trên ta có \(-8\cdot\frac{1}{2}-18=-4-18=-22\)

d) Tương tự

Bài 3:

a) \(2x\left(x-4\right)-x\left(2x+3\right)=4\)

=> 2x2 - 8x - 2x2 - 3x = 4

=> (2x2 - 2x2) + (-8x - 3x) = 4

=> -11x = 4

=> x = \(-\frac{4}{11}\)

b) x(5 - 2x) + 2x(x - 7) = 18

=> 5x - 2x2 + 2x2 - 14x = 18

=> 5x - 14x = 18

=> -9x = 18

=> x = -2

Còn 2 câu làm tương tự

21 tháng 9 2020

a) ( x - 3 )2 - 4 = 0

<=> ( x - 3 )2 - 22 = 0

<=> ( x - 3 - 2 )( x - 3 + 2 ) = 0

<=> ( x - 5 )( x - 1 ) = 0

<=> x = 5 hoặc x = 1

b( 2x + 3 )2 - ( 2x + 1 )( 2x - 1 ) = 22

<=> 4x2 + 12x + 9 - ( 4x2 - 1 ) = 22

<=> 4x2 + 12x + 9 - 4x2 + 1 = 22

<=> 12x + 10 = 22

<=> 12x = 12

<=> x = 1

c) ( 4x + 3 )( 4x - 3 ) - ( 4x - 5 )2 = 16

<=> 16x2 - 9 - ( 16x2 - 40x + 25 ) = 16

<=> 16x2 - 9 - 16x2 + 40x - 25 = 16

<=> 40x - 34 = 16

<=> 40x = 50

<=> x = 50/40 = 5/4

d) x3 - 9x2 + 27x - 27 = -8

<=> ( x - 3 )3 = -8

<=> ( x - 3 )3 = (-2)3

<=> x - 3 = -2

<=> x = 1 

e) ( x + 1 )3 - x2( x + 3 ) = 2

<=> x3 + 3x2 + 3x + 1 - x3 - 3x2 = 2

<=> 3x + 1 = 2

<=> 3x = 1

<=> x = 1/3

f) ( x - 2 )3 - x( x - 1 )( x + 1 ) + 6x2 = 5

<=> x3 - 6x2 + 12x - 8 - x( x2 - 1 ) + 6x2 = 5

<=> x3 + 12x - 8 - x3 + x = 5

<=> 13x - 8 = 5

<=> 13x = 13

<=> x = 1

21 tháng 9 2020

a) \(\left(x-3\right)^2-4=0\)

=> \(\left(x-3\right)^2-2^2=0\)

=> \(\left(x-3-2\right)\left(x-3+2\right)=0\)

=> \(\left(x-5\right)\left(x-1\right)=0\)

=> \(\orbr{\begin{cases}x=5\\x=1\end{cases}}\)

b) \(\left(2x+3\right)^2-\left(2x+1\right)\left(2x-1\right)=22\)

=> \(\left(2x+3\right)^2-\left[\left(2x\right)^2-1^2\right]=22\)

=> \(\left(2x+3\right)^2-\left(4x^2-1\right)=22\)

=> \(\left(2x\right)^2+2\cdot2x\cdot3+3^2-4x^2+1=22\)

=> \(4x^2+12x+9-4x^2+1=22\)

=> \(12x+9+1=22\)

=> \(12x+10=22\)

=> 12x = 12

=> x = 1

c) \(\left(4x+3\right)\left(4x-3\right)-\left(4x-5\right)^2=16\)

=> \(\left(4x\right)^2-3^2-\left[\left(4x\right)^2-2\cdot4x\cdot5+5^2\right]=16\)

=> \(16x^2-9-\left(16x^2-40x+25\right)=16\)

=> \(16x^2-9-16x^2+40x-25=16\)

=> \(-9+40x-25=16\)

=> \(40x=16+25-\left(-9\right)=16+25+9=50\)

=> x = 50/40 = 5/4

d) \(x^3-9x^2+27x-27=-8\)

=> \(x^3-3\cdot x^2\cdot3+3\cdot x\cdot3^2-3^3=8\)

=> \(\left(x-3\right)^3=-8\)

=> \(\left(x-3\right)^3=\left(-2\right)^3\)

=> x - 3  = -2 => x = 1

e) \(\left(x+1\right)^3-x^2\left(x+3\right)=2\)

=> \(x^3+3x^2+3x+1-x^3-3x^2=2\)

=> \(3x+1=2\)

=> \(3x=1\)=> x = 1/3

f) \(\left(x-2\right)^3-x\left(x-1\right)\left(x+1\right)+6x^2=5\)

=> \(x^3-3\cdot x^2\cdot2+3\cdot x\cdot2^2-2^3-x\left(x^2-1\right)+6x^2=5\)

=> \(x^3-6x^2+12x-8-x^3+x+6x^2=5\)

=> \(\left(12x+x\right)-8=5\)

=> 13x  = 13

=> x = 1

25 tháng 12 2020

ko có biết

4 tháng 10 2021

1, \(3x\left(x-7\right)+2x-14=0\)

\(\Rightarrow3x\left(x-7\right)+2\left(x-7\right)=0\)

\(\Rightarrow\left(x-7\right)\left(3x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=7\\x=\frac{-2}{3}\end{cases}}\)

2, \(x^3+3x^2-\left(x+3\right)=0\)

\(\Rightarrow x^2\left(x+3\right)-\left(x+3\right)=0\)

\(\Rightarrow\left(x+3\right)\left(x^2-1\right)=0\)

\(\Rightarrow\left(x+3\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=-3\\x=\pm1\end{cases}}\)

3, \(15x-5+6x^2-2x=0\)

\(\Rightarrow\left(15x-5\right)+\left(6x^2-2x\right)=0\)

\(\Rightarrow5\left(3x-1\right)+2x\left(3x-1\right)=0\)

\(\Rightarrow\left(3x-1\right)\left(5+2x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3x-1=0\\5+2x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=\frac{-5}{2}\end{cases}}\)

4, \(5x-2-25x^2+10x=0\)

\(\Rightarrow\left(5x-25x^2\right)-\left(2-10x\right)=0\)

\(\Rightarrow5x\left(1-5x\right)-2\left(1-5x\right)=0\)

\(\Rightarrow\left(1-5x\right)\left(5x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}1-5x=0\\5x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{2}{5}\end{cases}}\)

3 tháng 8 2018

b, x = -5/3 hoặc x = 4/3.

c, x = 0 hoặc x = 3, -3.

d, x = 0 hoặc x = 2, -2.

e, x = 1 hoặc x = \(\dfrac{-1}{2}\).

a: \(\Leftrightarrow x^2-40x+400-x^2-4x-3=-7\)

=>-44x+397=-7

=>-44x=-404

hay x=101

b: \(\Leftrightarrow\left[{}\begin{matrix}3x+5=0\\4-3x=0\end{matrix}\right.\Leftrightarrow x\in\left\{-\dfrac{5}{3};\dfrac{4}{3}\right\}\)

c: \(\Leftrightarrow x\left(x^2-9\right)=0\)

=>x(x-3)(x+3)=0

hay \(x\in\left\{0;3;-3\right\}\)

d: \(\Leftrightarrow x\left(x-2\right)\left(x+2\right)=0\)

hay \(x\in\left\{0;2;-2\right\}\)

e: =>(2x+1)(1-x)=0

=>x=-1/2 hoặc x=1