K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
7 tháng 1 2022
a: Xét ΔHDE và ΔHGE có
HD=HG
HE chung
DE=GE
Do đó: ΔHDE=ΔHGE
b: Xét ΔDEI và ΔGEI có
ED=EG
\(\widehat{DEI}=\widehat{GEI}\)
EI chung
DO đó: ΔDEI=ΔGEI
Suy ra: \(\widehat{IDE}=\widehat{IGE}=90^0\)
hay IG\(\perp\)GE
c: Xét ΔHDI và ΔHGI có
HD=HG
DI=GI
HI chung
Do đó: ΔHDI=ΔHGI
10 tháng 1 2022
a Xét ΔHDE và ΔHGE có
HD=HG
HE chung
DE=GE
Do đó: ΔHDE=ΔHGE
b: Xét ΔEDI và ΔEGI có
ED=EG
\(\widehat{DEI}=\widehat{GEI}\)
EI chung
Do đó: ΔEDI=ΔEGI
Suy ra: \(\widehat{EDI}=\widehat{EGI}=90^0\)
hay IG\(\perp\)GE
c: Xét ΔHDI vuông tại H và ΔHGI vuông tại H có
IH chung
ID=IG
Do đó: ΔHDI=ΔHGI
Lời giải:
a. Xét tam giác $HDE$ và $HGE$ có:
$EH$ chung
$DE=GE$ (gt)
$HD=HG$ (do $H$ là trung điểm $DG$)
$\Rightarrow \triangle HDE=\triangle HGE$ (c.c.c)
b. Từ tam giác bằng nhau phần a suy ra $\widehat{E_1}=\widehat{E_2}$
Xét tam giác $EDI$ và $EGI$ có:
$\widehat{E_1}=\widehat{E_2}$ (cmt)
$ED=EG$ (gt)
$EI$ chung
$\Rightarrow \triangle EDI=\triangle EGI$ (c.g.c)
$\Rightarrow \widehat{EGI}=\widehat{EDI}=90^0$
$\Rightarrow IG\perp GE$ (đpcm)
Hình vẽ: