Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi I là trung điểm AB, có MAB là tam giác cân => MI vuông góc AB, IM cắt DC tại K, dể thấy K là trung điểm DC.
Ta có MDC là tam giác cân, ta chỉ cần cm nó có 1 góc bằng 60o.
Đặt cạnh của hình vuông là a, có IK=a.
gọi N là điểm trên IK sao cho góc MAN =15o (N khác I), có AM là phân giác của góc(IAN), theo tính chất phân giác ta có:
MN / MI = AN / AI (*)
trong đó:
AI = a/2
AN = AI / cos30o = a / √3
IN=AI*tan30o= a√3/6. thay vào (*)
MN / MI = (a / √3):(a / 2) = 2 / √3
=> MN = MI * (2/√3) mà MN = IN - MI
=> IN - MI = MI* (2/√3)
thay IN, chuyển vế ta tính được:
MI = a / (4 + 2 √3)
=> MK = IK - MI
=> MK = a - a / (4 + 2√3)
=> MK = (3+2√3)a / (4 + 2√3) = a√3 / 2
có tan(MDK)=MK / DK
=(a√3 / 2) : (a / 2) = √3
=> góc (MDK) = 60o
vậy tam giác MDC đều
Sagamoto Sara đúng đó
Ta lại chọn một điểm N trong hình vuông sao cho góc DAN= góc ADN = 15độ.
Ta thấy AND=AMB --> AN=AM. tam giác NMA ,có góc NAM=90-15-15=60 và AN=AM nên NMA là tam giác đều.--> AN=NM
Góc AND=180-15-15=150 độ--> Góc DNM=360-150-60= 150 độ
Vậy góc AND= góc DNM.
So sánh 2 tg AND và DNM chúng bằng nhau cạnh góc góc.
Vậy: AD=DM và góc MDC=90-15-15=60 độ. (dpcm)
a) Xét ΔABMΔ��� có :
ˆMAB=ˆMBA(gt)���^=���^(��)
=> ΔABMΔ��� cân tại M
Do đó ta có : ˆAMB=180o−(ˆMAB+ˆMBA)���^=180�−(���^+���^) (tổng 3 góc của 1 tam giác)
=> ˆAMB=180o−2.30o=120o���^=180�−2.30�=120�
Ta có : ˆBAC=ˆMAB−ˆMAC���^=���^−���^
=> 90o=30o−ˆMAC90�=30�−���^
=> ˆMAC=90o−60o���^=90�−60�
=> ˆMAC=60o���^=60�
b) Có : ˆAMB+ˆAMC=180o���^+���^=180� (kề bù)
=> 120o+ˆAMC=180o120�+���^=180�
=> ˆAMC=180o−120o���^=180�−120�
=> ˆAMC=60o���^=60�
Xét ΔAMCΔ��� có :
ˆMAC=ˆAMC(=60o)���^=���^(=60�)
=> ΔAMCΔ��� cân tại A
Mà có : ˆACM=180o−(ˆMAC+ˆAMC)���^=180�−(���^+���^) (tổng 3 góc của 1 tam giác)
=> ˆACM=180o−2.60o=60o���^=180�−2.60�=60�
Thấy : ˆAMC=ˆMAC=ˆACM=60o���^=���^=���^=60�
Do đó ΔAMCΔ��� là tam giác đều (đpcm)
- Ta có : Do ΔAMBΔ��� cân tại A (cmt - câu a) (1)
=> BM=AM��=�� (tính chất tam giác cân)
Mà có : ΔAMCΔ��� cân tại M (cmt)
=> AM=MC��=�� (tính chất tam giác cân) (2)
- Từ (1) và (2) => BM=MC(=AC)��=��(=��)
Mà : BM=12BC��=12��
Do vậy : AC=12BC
a: Xét ΔMAB có góc MAB=góc MBA
nên ΔMAB cân tại M
=>góc AMB=180-2*30=120 độ và góc MAC=90-30=60 độ
b: Xét ΔMAC có góc MAC=góc MCA=60 độ
nên ΔMAC đều
a: Xét ΔMAB và ΔMDC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔMAB=ΔMDC
Ta lại chọn một điểm N trong hình vuông sao cho góc DAN= góc ADN = 15độ.
Ta thấy AND=AMB --> AN=AM. tam giác NMA ,có góc NAM=90-15-15=60 và AN=AM nên NMA là tam giác đều.--> AN=NM
Góc AND=180-15-15=150 độ--> Góc DNM=360-150-60= 150 độ
Vậy góc AND= góc DNM.
So sánh 2 tg AND và DNM chúng bằng nhau cạnh góc góc.
Vậy: AD=DM và góc MDC=90-15-15=60 độ. (dpcm)