Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a) (2x + 1)3 = 125
=> (2x + 1)3 = 53
=> 2x + 1 = 5
=> 2x = 5 - 1
=> 2x = 4
=> x = 2
b) (x - 5)4 = (x - 5)6
Với hai mũ khác nhau , ta chỉ có thể tìm được giá trị biểu thức bằng 1 hoặc 0 (giá trị của chúng bằng nhau)
+) (x - 5)4 = (x - 5)6 = 0
=> (x - 5)4 = 0
=> (x - 5)4 = 04
=> x - 5 = 0 => x = 0 + 5 = 5
+) (x - 5)4 = (x- 5)6 = 1
=> (x - 5)4 = 1
=> (x - 5)4 = 14
=> x - 5 = 1
=> x = 1 + 5
=> x = 6
Bài 4 :
a3 . a9 = a3 + 9 = a12
(a5)7.(a6)4 .a12 = a35 . a24 . a12 = a35 + 24 + 12 = a71
4.52 - 2.32 = 4.25 - 2.9
= 100 - 18
= 82
[(25 : 2 - 22 x 22) x 9999] + 10000
= [(24 - 24) x 9999] + 1000
= (0 x 9999) + 10000
= 0 + 10000
= 10000
ỦNg hộ mk nha ^_-
Lần sau viết cái đề rõ rõ ra nhs!!!
a) \(A=2+2^2+2^3+................+2^{100}\)
\(\Rightarrow2A=2^2+2^3+2^4+................+2^{100}+2^{101}\)
\(\Rightarrow2A-A=\left(2^2+2^3+..............+2^{100}+2^{101}\right)-\left(2+2^2+............+2^{100}\right)\)
\(\Rightarrow A=2^{101}-2\)
b) \(B=1+3+3^2+..................+3^{2009}\)
\(\Rightarrow3B=3+3^2+3^3+..................+3^{2009}+3^{2010}\)
\(\Rightarrow3B-B=\left(3+3^2+...............+3^{2010}\right)-\left(1+3+3^2+.............+3^{2009}\right)\)
\(\Rightarrow2B=3^{2010}-1\)
\(\Rightarrow B=\dfrac{3^{2010}-1}{2}\)
c) \(C=4+4^2+4^3+................+4^n\)
\(\Rightarrow4C=4^2+4^3+.................+4^n+4^{n+1}\)
\(\Rightarrow4C-C=\left(4^2+4^3+.............+4^n+4^{n+1}\right)-\left(4+4^2+............+4^n\right)\)
\(\Rightarrow3C=4^{n+1}-4\)
\(\Rightarrow C=\dfrac{4^{n+1}-4}{3}\)
Có : 126 chia hết cho 3, 213 chia hết cho 3
Để được M chia hết cho 3 thì x phải chia hết cho 3
Hay gọi là 3k ( k thuộc N)
2.
Hình như đầu bài bài 2 sai
\(a,A=2^1+2^2+2^3+...+2^{2019}\)
\(2A=2^2+2^3+2^4+...+2^{2020}\)
\(\Rightarrow2A-A=A=2^{2020}-2\)
\(B=1+3+3^2+3^3+...+3^{2020}\)
\(3B=3+3^2+3^3+...+3^{2021}\)
\(3B-B=2B=3^{2021}-1\)
\(B=\frac{3^{2021}-1}{2}\)
a,\(A=2^1+2^2+2^3+...+2^{2019}\)
\(2A=2^2+2^3+2^4+...+2^{2020}\)
\(2A-A=\left[2^2+2^3+2^4+...+2^{2020}\right]-\left[2^1+2^2+...+2^{2019}\right]\)
\(A=2^{2020}-2^1=2^{2020}-2\)
b, \(B=1+3+3^2+3^3+...+3^{2020}\)
\(3B=3+3^2+3^3+...+3^{2021}\)
\(3B-B=\left[3+3^2+3^3+...+3^{2021}\right]-\left[1+3+3^2+...+3^{2020}\right]\)
\(2B=3^{2021}-1\)
\(B=\frac{3^{2021}-1}{2}\)