Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(\dfrac{\left(x^2+2x\right)}{\left(x+2\right)^2}=\dfrac{x\left(x+2\right)}{\left(x+2\right)\left(x+2\right)}=\dfrac{x}{x+2}\)
b. \(\dfrac{x^2-7x+12}{x^2-6x+9}=\dfrac{x^2-3x-4x+12}{\left(x-3\right)^2}\)
\(=\)\(\dfrac{x\left(x-3\right)-4\left(x-3\right)}{\left(x-3\right)\left(x-3\right)}=\dfrac{\left(x-4\right)\left(x-3\right)}{\left(x-3\right)\left(x-3\right)}=\dfrac{x-4}{x-3}\)
c. \(\dfrac{x^2-5x+6}{x^2-x-2}=\dfrac{x^2-2x-3x+6}{x^2-2x+x-2}\)
\(=\dfrac{x\left(x-2\right)-3\left(x-2\right)}{x\left(x-2\right)+\left(x-2\right)}=\dfrac{\left(x-3\right)\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}=\dfrac{x-3}{x+1}\)
d. \(\dfrac{\left(x+y\right)^2-z^2}{2\left(x+y+z\right)}=\dfrac{\left(x+y-z\right)\left(x+y+z\right)}{2\left(x+y+z\right)}=\dfrac{x+y-z}{2}\)
\(a,\)Mình làm theo kiểu lược đồ
Nhẩm nghiệm của đa thức trên ta đc : 2
Có lược đồ sau :(dòng trên ghi các hệ số)
1 | -2 | -6 | 12 | |
2 | 1 | 0 | -6 | 0 |
Ta phân tích đc thành :\(\left(x-2\right)\left(x^2-6\right)\)
\(c,x^2-5x+4\)
\(=x^2-4x-x+4\)
\(=x\left(x-4\right)-\left(x-4\right)\)
\(=\left(x-1\right)\left(x-4\right)\)
\(d,3x^2+5x+2\)
\(=3x^2+3x+2x+2\)
\(=3x\left(x+1\right)+2\left(x+1\right)\)
\(=\left(x+1\right)\left(3x+2\right)\)
\(e,x^3-x+3x^2y+3xy^2+y^3-y\)
\(=\left(x^3+y^3\right)+3xy\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left[\left(x^2-xy+y^2\right)+3xy-1\right]\)
\(x^3-2x^2-6x+12\)
\(=x^2.\left(x-2\right)-6\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2-6\right)\)
\(x^4-7x^2+12\)
\(=\left[\left(x^2\right)^2-2.3,5x+3,5^2\right]-0,25\)
\(=\left(x^2-3,5\right)^2-0,5^2\)
\(=\left(x^2-3,5-0,5\right)\left(x^2-3,5+0,5\right)\)
\(=\left(x^2-4\right)\left(x^2-3\right)\)
Câu c tương tự câu b
h) Ta có: \(\left\{{}\begin{matrix}\left|x-7\right|=\left|7-x\right|\ge7-x\\\left|x+5\right|\ge x+5\end{matrix}\right.\)
\(\Rightarrow\left|7-x\right|+\left|x+5\right|\ge\left(7-x\right)+\left(x+5\right)\)
\(\Rightarrow\left|x-7\right|+\left|x+5\right|\ge12\)
\(\Rightarrow H\ge12\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}7-x\ge0\\x+5\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le7\\x\ge-5\end{matrix}\right.\)
\(\Leftrightarrow-5\le x\le7\)
Vậy, MinH = 12 \(\Leftrightarrow-5\le x\le7\)
a) Ta có: \(A=2x^2-8x+10\)
\(=2\left(x^2-4x+5\right)\)
\(=2\left(x^2-4x+2^2+1\right)\)
\(2\left[\left(x-2\right)^2+1\right]\)
Ta lại có: \(\left(x-2\right)^2\ge0\)
\(\Rightarrow2\left[\left(x-2\right)^2+1\right]\ge2\)
\(\Rightarrow A\ge2\)
Dấu bằng xảy ra \(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
Vậy MinA = 2 \(\Leftrightarrow x=2\)
\(\dfrac{20x\left(2-x\right)}{12x\left(x-2\right)^2}=\dfrac{5.4.x\left(2-x\right)}{3.4.x\left(2-x\right)^2}=\dfrac{5}{3\left(2-x\right)}\)
\(=\dfrac{-20x\left(x-2\right)}{12x\left(x-2\right)^2}=\dfrac{-5}{3\left(x-2\right)}\)
giúp mình với mình cần gấp
a)A=(2x+y)2-(y-2x)2
\(A=(2x+y-y+2x)(2x+y+y-2x)\)
\(A=4x.2y=8xy\)
b)B=x2-y2+(x-y)2
\(B=x^2-y^2+x^2-2xy+y^2\)
\(B=2x^2-2xy\)
Lần sau bạn đăng vào môn Toán nhé!!!