K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2020

a, Xét △ABC vuông tại A có: ABC + ACB = 90o (tổng 2 góc nhọn trong △ vuông)

=> 53o + ACB = 90o

=> ACB = 37o

b, Xét △ABE vuông tại A và △DBE vuông tại D

Có: ABE = DBE (gt)

       BE là cạnh chung

=> △ABE = △DBE (ch-gn)

c, Xét △FBH và △CBH cùng vuông tại H

Có: BH là cạnh chung

       FBH = CBH (gt)

=> △FBH = △CBH (cgv-gnk)

=> BF = BC (2 cạnh tương ứng)

d, Xét △ABC vuông tại A và △DBF vuông tại D

Có: AB = BD (△ABE = △DBE)

       ABC là góc chung

=> △ABC = △DBF (cgv-gnk)

Ta có: AB + AF = BF và BD + DC = BC

Mà AB = BD (cmt) ; BF = BC (cmt)

=> AF = DC

Xét △AEF và △DEC

Có: AF = DC (cmt)

      AE = DE (△ABE = △DBE)

=> △AEF = △DEC (cgv)

=> AEF = DEC (2 góc tương ứng)

Ta có: AED + DEC = 180o (2 góc kề bù)

=> AED + AEF = 180o

=> DEF = 180o

=> 3 điểm D, E, F thẳng hàng

18 tháng 12 2019

a) Vì ^ABC = 50\(^o\)và BE là phân giác ^ABC 

=> ^ABE = ^ABC : 2=  50\(^o\):2 = 25\(^o\)

Xét \(\Delta\)ABE có: ^BEC là góc ngoài tại đỉnh B

=> ^BEC = ^ABE + ^BAE = 25\(^o\)+90\(^o\)=115\(^o\)

b) Xét \(\Delta\)ABE và \(\Delta\)DBE có:

^ABE = ^DBE ( BE là phân giác ^ABC)

BE chung

BA = BE 

=>  \(\Delta\)ABE = \(\Delta\)DBE

=> ^BDE = ^BAE = 90\(^o\)

=> DE vuông BC

c) Sai đề rồi nhé em kiểm tra lại đề bài.

20 tháng 12 2019

c) Xét \(\Delta\)BFH và \(\Delta\)BCH có:

^BHF = ^BHC ( = 90\(^o\)

BH chung 

^FBH = ^CBH ( BE là phân giác ^B)

=> \(\Delta\)BFH = \(\Delta\)BCH ( g.c.g)

=> CB = FB  (1)

Xét \(\Delta\)BFD  và  \(\Delta\)BCA có:

BF = BC ( theo 1)

^B chung 

BA = BD ( giả thiết )

=>  \(\Delta\)BFD = \(\Delta\)BCA ( c.g.c)

=> ^BDF = ^BAC  = 90 \(^o\)

=> FD vuông BC  mà ED vuông BC

=> F; E; D thẳng hàng

12 tháng 1 2020

a) Do tam giác ABC vuông tại A 

=> Theo định lý py-ta-go ta có

BC^2=AB^2+AC^2

=>BC=\(\sqrt{AB^2+AC^2}\)\(\sqrt{9^2+12^2}\)=\(\sqrt{225}\)=15

Vậy cạnh BC dài 15 cm

b)Xét Tam giác ABE vuông tại A và tam giác DBE vuông tại D có

BE là cạnh chung

AB=BD(Giả thiết)

=>Tam giác ABE=Tam giác DBE(CGV-CH)

12 tháng 1 2020

B A C H D E K M

 GT 

 △ABC (BAC = 90o) , AB = 9 cm , AC = 12 cm

 D \in  BC : BD = BA.

 DK ⊥ BC (K \in  AB , DK ∩ AC = { E }

 AH ⊥ BC , AH ∩ BE = { M }

 KL

 a, BC = ?

 b, △ABE = △DBE ; BE là phân giác ABC

 c, △AME cân

Bài giải:

a, Xét △ABC vuông tại A có: BC2 = AB2 + AC2 = 92 + 122 = 81 + 144 = 225 => BC = 15 (cm)

b, Xét △ABE vuông tại A và △DBE vuông tại D

Có: AB = BD (gt)

    BE là cạnh chung

=> △ABE = △DBE (ch-cgv)

=> ABE = DBE (2 góc tương ứng)

Mà BE nằm giữa BA, BD

=> BE là phân giác ABD

Hay BE là phân giác ABC

c, Vì △ABE = △DBE (cmt)

=> AEB = DEB (2 góc tương ứng)

Vì DK ⊥ BC (gt)

    AH ⊥ BC (gt)

=> DK // AH (từ vuông góc đến song song)

=> AME = MED (2 góc so le trong)

Mà MED = MEA (cmt)

=> AME = MEA 

=> △AME cân

29 tháng 1 2016

a) Ta có : tam giác ABC vuông tại A 

=> góc B + góc C = 90\(^o\)

Mà góc B = 53\(^o\)

=> góc C = góc A - góc B 

=> góc C = 90\(^o\)- 53\(^o\)

=> góc C = 37\(^o\)

b) Xét tam giác BEA và  tam giác BED có :

BD = BA (gt)

BE là cạnh chung

góc ABE = góc DBE ( BE là tia p/giác của góc B)

=>  tam giác BEA =  tam giác BED

c) Ta có CH vuông góc với BE 

=> Tam giác BHC và  tam giác BHF là  tam giác vuông

Xét  tam giác vuông BHF và  tam giác vuông BHC có:

BH là cạnh chung 

góc FBH = góc HBC ( BE là tia p/giác của góc B)

=>  tam giác vuông BHF =  tam giác vuông BHC ( cạnh góc vuông + góc nhọn )

=> BF = BC ( 2 cạnh tương ứng ) (*)

d) Xét tam giác BEF và tam giác BEC có :

BF = BC ( theo (*))

góc FBE = góc CBE ( BE là tia p/giác của góc B)

BE là cạnh chung

=>  tam giác BEF = tam giác BEC (c . g . c )

=> góc BFD = góc BCA ( 2 góc tương ứng ) (**)

Xét  tam giác BAC và  tam giác BDF có :

góc BFD = góc BCA ( theo (**))

góc B là góc chung

BA = BD (gt)

=> tam giác BAC =  tam giác BDF ( g . c . g )

=> góc FDB = góc CAB ( 2 góc tương ứng )

Xét tam giác BED có : góc EBD +  góc BED +  góc BDE = 180\(^o\)

Mà :góc FDB = góc CAB = 90\(^o\)

góc EBD = \(\frac{1}{2}\)góc B = \(\frac{53}{2}\)= 26,5\(^o\)

=> góc BED = 180\(^o\)- (90\(^o\)+ 26,5\(^o\))

=> góc BED = 180\(^o\)- 116,5\(^o\)

=> góc BED = 63,5\(^o\)

Mặt khác : Tam giác BED = tam giác BEA 

=> góc AEB = BED = 63,5\(^o\)

Xét tam giác FAE có :góc FAE + góc FEA + góc AFE = 180\(^o\)

Mà : góc FAE = 90\(^o\), góc AFE = góc ACB = 37\(^o\)

=> FEA = 180\(^o\)- (90\(^o\)+ 37\(^o\))

=> FEA = 180\(^o\)- 127\(^o\)

=> FEA = 53\(^o\)

Lại có : góc FAD = góc FEA + góc AEB + góc BED 

=> FAD = 53\(^o\)+ 63,5\(^o\)+ 63,5 \(^o\)

=> FAD = 180\(^o\)

=> D, F, E thẳng hàng

Bài 1: Cho tam giác ABC vuông tại A có 0 B 53  a) Tính C b) Trên cạnh BC lấy D sao cho BD = BA. Tia phân giác của góc B cắt AC ở E. Chứng minh    BEA BED . Từđó suy ra ED BC  c) Qua C vẽ đường thẳng vuông góc với BE tại H, CH cắt AB tại F. Chứng minh rằng    BHF BHC d) Chứng minh    BAC BDF và D, E, F thẳng hàng. Bài 2: Cho ABC có AB AC  ; M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A có 0 B 53  a) Tính C b) Trên cạnh BC lấy D sao cho BD = BA. Tia phân giác của góc B cắt AC ở E. Chứng minh    BEA BED . Từđó suy ra ED BC  c) Qua C vẽ đường thẳng vuông góc với BE tại H, CH cắt AB tại F. Chứng minh rằng    BHF BHC d) Chứng minh    BAC BDF và D, E, F thẳng hàng. Bài 2: Cho ABC có AB AC  ; M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho AM MD.  Chứng minh: a)    AMB DMC . Từ đó suy ra AB // CD b) AC // BD và AC = BD c) AM BC.  Bài 3: Cho tam giác ABC có AB AC  . Gọi M là một điểm nằm trong tam giác sao cho MB MC  ; N là trung điểm của BC. Chứng minh: a)    AMB DMC . Từ đó suy ra AM là tia phân giác của ·BAC. b) Ba điểm A; M; N thẳng hàng. c) MN là đường trung trực của đoạn thẳng BC

1
15 tháng 12 2021

cac ban giup minh voi nhe

 

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

a: Xét ΔBAE và ΔBDE có

BA=BD

góc ABE=góc DBE

BE chung

=>ΔBAE=ΔBDE

b: Xét ΔBFC có

BH vừa là đường cao, vừa là phân giác

=>ΔBFC cân tại B

c: Xét ΔBAC và ΔBDF có

BA=BD

góc ABC chung

BC=BF

=>ΔBAC=ΔBDF

=>góc BDF=góc BAC=90 độ

=>D,E,F thẳng hàng

13 tháng 12 2017

hjufyhijug