K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2022

Vì G là trọng tâm ΔABC

⇒AG=2323 AH=2323 18=12(cm)

Mà AG=2GH

⇒GH=AG2AG2 =122122 =6(cm)

BH=HC(do AH là trung tuyến BC)

⇒BH=HC=BC2BC2 =162162 =8(cm)

Xét ΔGHC có:

   GH²+HC²=GC²(Định lí Pi-ta-go)

⇒6²+8²=GC²

⇒36+64=GC²

⇒GC²=100=10²

⇒GC=10(cm)

Mà GC=2GI

⇒GI=GC2GC2 =102102=5(cm)

Vậy độ dài cạnh GI là 5cm

d)Ta có:

Theo b) GI=GK

⇒ΔIGK là tam giác cân tại G

{GC=2GIGB=2GK{GC=2GIGB=2GK

Mà GI=GK

⇒GC=GB

⇒ΔGBC là tam giác cân tại G

Ta có:

∠KIG=∠IKG=180∗−∠IGK2180∗−∠IGK2

∠GBC=∠GCB=180∗−∠BGC2180∗−∠BGC2

Mà ∠IGK=∠BGC(đối đỉnh)

⇒∠KIG=∠GCB

Mà 2 góc ở vị trí so le trong 

⇒IK=BC

19 tháng 5 2022

Tham khảo

Anser reply image

29 tháng 5 2022

Tham khảo
a) Ta có: AB = AC (gt); AI = IB = 1/2AB (Cmt); AK = KC = 1/2 AC (gt)
AB = AI + IB 
AC = AK + KC
=> AI = AK
Ta lại có: t/giác ABC cân tại A; AH là đường cao
=> AH là đường p/giác (t/c của t/giác cân)
=> góc BAH = góc CAH
hay góc IAG = góc KAG

b) Xét t/giác IAG và t/giác KAG
có IA = AK (cmt)
 góc IAG = góc KAG (cmt)
  AG : chung
=> t/giác IAG = t/giác KAG (c.g.c)

c) Ta có: AI = AK (cm câu b)
=> t/giác AIK cân tại A
=> góc AIK = góc AKI = (180 độ - góc A)/2 (1)
Ta lại có:  t/giác ABC cân tại A
=> góc B = góc C = (180 độ - góc A)/2 (2)
Từ (1) và (2) suy ra góc AIK = góc B
Mà góc AIK và góc B ở vị trí đồng vị
=> IK // BC

29 tháng 5 2022

refer
a) Ta có: AB = AC (gt); AI = IB = 1/2AB (Cmt); AK = KC = 1/2 AC (gt)
AB = AI + IB 
AC = AK + KC
=> AI = AK
Ta lại có: t/giác ABC cân tại A; AH là đường cao
=> AH là đường p/giác (t/c của t/giác cân)
=> góc BAH = góc CAH
hay góc IAG = góc KAG

b) Xét t/giác IAG và t/giác KAG
có IA = AK (cmt)
 góc IAG = góc KAG (cmt)
  AG : chung
=> t/giác IAG = t/giác KAG (c.g.c)

c) Ta có: AI = AK (cm câu b)
=> t/giác AIK cân tại A
=> góc AIK = góc AKI = (180 độ - góc A)/2 (1)
Ta lại có:  t/giác ABC cân tại A
=> góc B = góc C = (180 độ - góc A)/2 (2)
Từ (1) và (2) suy ra góc AIK = góc B
Mà góc AIK và góc B ở vị trí đồng vị
=> IK // BC

19 tháng 5 2022

Tham khảo

 

b) Ta có: AB = AC (gt); AI = IB = 1/2AB (Cmt); AK = KC = 1/2 AC (gt)
AB = AI + IB 
AC = AK + KC
=> AI = AK
Ta lại có: t/giác ABC cân tại A; AH là đường cao
=> AH là đường p/giác (t/c của t/giác cân)
=> góc BAH = góc CAH
hay góc IAG = góc KAG

Xét t/giác IAG và t/giác KAG
có IA = AK (cmt)
 góc IAG = góc KAG (cmt)
  AG : chung
=> t/giác IAG = t/giác KAG (c.g.c)

19 tháng 5 2022

mik tham khảo link này nha: https://lazi.vn/edu/exercise/cho-tam-giac-abc-can-tai-a-duong-cao-ah-va-trung-tuyen-bk-cat-nhau-tai-g-tia-cg-cat-ab-tai-i

19 tháng 5 2022

Tham khảo

a.Xét ΔAHB,ΔAHC có:

Chung AHAH

ˆAHB=ˆAHC(=90o)

AB=AC

→ΔAHB=ΔAHC(cạnh huyền-cạnh góc vuông)

→HB=HC

→H là trung điểm BC

Mà K là trung điểm AC 

Do AH∩BK=G

→G là trọng tâm ΔABC

19 tháng 5 2022

a.Xét ΔAHB,ΔAHCΔAHB,ΔAHC có:

Chung AHAH

ˆAHB=ˆAHC(=90o)AHB^=AHC^(=90o)

AB=ACAB=AC

→ΔAHB=ΔAHC→ΔAHB=ΔAHC(cạnh huyền-cạnh góc vuông)

→HB=HC→HB=HC

→H→H là trung điểm BCBC

Mà KK là trung điểm ACAC 

Do AH∩BK=GAH∩BK=G

→G→G là trọng tâm ΔABC

a: Xét ΔABC có

AH,BK là trung tuyến

AH cắt BK tại G

=>G là trọng tâm

=>I là trung điểm của AB

=>IA=IB

c: GH=18/3=6cm

HC=16/2=8cm

=>GC=10cm

=>GI=5cm

13 tháng 7 2019

A B C M N Q P O R S T A B C H M D I A B C D K G M K E P F (Hình a) (Hình b) (Hình c) Q I

Bài toán 1: (Hình a)

Gọi đường thẳng qua N vuông góc với AN cắt AC tại R, qua P kẻ đường thẳng song song với BC. Đường thẳng này cắt AM,AN,BC lần lượt tại S,T,K.

Ta thấy \(\Delta\)APR có AN vừa là đường cao, đường phân giác => \(\Delta\)APR cân tại A => AP = AR, NP = NR

Áp dụng hệ quả ĐL Thales \(\frac{BM}{PS}=\frac{CM}{KS}\left(=\frac{AM}{AS}\right)\)=> PS = KS

Áp dụng ĐL đường phân giác trong tam giác: \(\frac{TK}{TP}=\frac{AK}{AP}\Rightarrow\frac{ST+SK}{TP}=\frac{AK}{AR}\)

\(\Rightarrow\frac{2ST+PT}{TP}=\frac{AR+RK}{AR}\Rightarrow\frac{2ST}{TP}=\frac{RK}{AR}\)

Dễ thấy NS là đường trung bình của  \(\Delta\)RKP => RK = 2NS. Do đó \(\frac{ST}{TP}=\frac{NS}{AR}\)

Đồng thời NS // AR, suy ra \(\frac{ST}{TP}=\frac{NS}{AR}=\frac{SQ}{QA}\)=> QT // AP (ĐL Thaels đảo)

Mà AP vuông góc PO nên QT vuông góc PO. Từ đây suy ra T là trực tâm của \(\Delta\)POQ

=> QO vuông góc PT. Lại có PT // BC nên QO vuông góc BC (đpcm).

Bài toán 2: (Hình b)

Ta có IB = IC => \(\Delta\)BIC cân tại I => ^IBC = ^ICB = ^ACB/2 => \(\Delta\)MCI ~ \(\Delta\)MBC (g.g)

=> MC2 = MI.MB. Xét \(\Delta\)AHC có ^AHC = 900 , trung tuyến HM => HM = MC

Do đó MH2 = MI.MB => \(\Delta\)MIH ~ \(\Delta\)MHB (c.g.c) => ^MHI = ^MBH = ^MBC = ^MCI

=> Tứ giác CHIM nội tiếp. Mà CI là phân giác ^MCH nên (IH = (IM hay IM = IH (đpcm).

Bài toán 3: (Hình c)

a) Gọi đường thẳng qua C vuông góc CB cắt MK tại F, DE cắt BC tại Q, CG cắt BD tại I.

Áp dụng ĐL Melelaus:\(\frac{MB}{MC}.\frac{GA}{GB}.\frac{DC}{DA}=1\)suy ra \(\frac{DC}{DA}=2\)=> A là trung điểm DC

Khi đó G là trọng tâm của \(\Delta\)BCD. Do CG cắt BD tại I nên I là trung điểm BD

Dễ thấy \(\Delta\)BCD vuông cân tại B => BI = CM (=BC/2). Từ đó \(\Delta\)IBC = \(\Delta\)MCF (g.c.g)

=> CB = CF => \(\Delta\)BCF vuông cân ở C => ^CBA = ^CBF (=450) => B,A,F thẳng hàng

=> CA vuông góc GF. Từ đó K là trực tâm của \(\Delta\)CGF => GK vuông góc CF => GK // CM

Theo bổ đề hình thang thì P,Q lần lượt là trung điểm GK,CM. Kết hợp \(\Delta\)CEM vuông ở E

=> EQ=CM/2. Áp dụng ĐL Melelaus có \(\frac{GD}{GM}.\frac{EQ}{ED}.\frac{CM}{CQ}=1\)=> \(\frac{EQ}{ED}=\frac{1}{4}\)

=> \(\frac{ED}{CM}=2\)=> DE = 2CM = BC (đpcm).

b) Theo câu a thì EQ là trung tuyến của \(\Delta\)CEM vuông tại E => EQ = QC => ^QEC = ^QCE

Vì vậy ^PEG = ^QEC = ^QCE = ^PGE => \(\Delta\)EPG cân tại P => PG = PE (đpcm).

7 tháng 7 2017

29 tháng 4 2018

Vẽ hình đi 

29 tháng 4 2018

 Hỏa Long Natsu bác eii, cái bài này là ae mk tự vẽ hình hay sao ý.

A B C G 1 2 1 2 M 30cm H 36cm

a) Xét \(\Delta AHB\text{ và }\Delta AHC\)

\(AB=AC\)

\(\widehat{A_1}=\widehat{A_2}\)

AH là cạnh chung

Nên: \(\Delta AHB=\Delta AHC\left(c-g-c\right)\)

\(\Rightarrow BH=CH\left(2\text{ cạnh tương ứng}\right)\)

\(\Rightarrow\Delta ABC\perp AH\left(\text{là phân giác cũng vừa là đường cao}\right)\)

\(\Rightarrow AH\perp BC\)

b) \(BH=\frac{36}{2}=18\left(cm\right)\)

\(AB^2=AH^2+BH^2\left(\text{áp dụng định lý Py-Ta-Go}\right)\)

\(AH^2=AB^2-BH^2\)

\(AH^2=30^2-18^2\)

\(AH^2=576\)

\(\Rightarrow AH=\sqrt{576}=24\left(cm\right)\)

c) \(AG=\frac{2}{3}.AH\)

\(\Rightarrow AH.\frac{2}{3}=24.\frac{2}{3}=16\left(cm\right)\)

\(AM=\frac{AB}{2}=\frac{30}{2}=15\left(cm\right)\)

\(\Rightarrow BA^2=AM^2+BM^2\)

\(\Rightarrow MB^2=BA^2-BM^2\)

\(MB^2=30^2-15^2\)

\(MB^2=\sqrt{675}=26\)

d) Bạn tự giải nha