K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

góc ABD=góc HBD

=>ΔBAD=ΔBHD

b: AD=DH

DH<DC

=>AD<DC

c: Xet ΔDAK vuông tại A và ΔDHC vuông tại H có

DA=DH

góc ADK=góc HDC

=>ΔDAK=ΔDHC

=>DK=DC và AK=HC

=>D nằm trên trung trực của KC(1) và BK=BC

=>ΔBKC cân tại B

mà BI la trung tuyến

nen BI là trung trực của KC(2)

Từ (1), (2) suy ra B,I,D thẳng hàng

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H co

BD chung

góc ABD=góc HBD

=>ΔBAD=ΔBHD

b: DA=DH

DH<DC

=>DA<DC

c: Xét ΔBHK vuông tại H và ΔBAC vuông tại A có

BH=BA

góc HBK chung

=>ΔBHK=ΔBAC

=>BK=BC

=>ΔBKC can tại B

mà BI là trung tuyến

nên BI là phân giác của góc KBC

mà BD là phân giác

nên B,D,I thẳng hàng

27 tháng 4 2023

thanks

 

a) Xét ΔABD vuông tại B và ΔACD vuông tại C có

AD chung

AB=AC(ΔABC cân tại A)

Do đó: ΔABD=ΔACD(Cạnh huyền-cạnh góc vuông)

Suy ra: \(\widehat{BAD}=\widehat{CAD}\)(hai góc tương ứng)

mà tia AD nằm giữa hai tia AB,AC

nên AD là tia phân giác của \(\widehat{BAC}\)(đpcm)

Ta có: ΔABD=ΔACD(cmt)

nên DB=DC(hai cạnh tương ứng)

Ta có: DB=DC(cmt)

nên D nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: AB=AC(ΔABC cân tại A)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Ta có: MB=MC(M là trung điểm của BC)

nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(3)

Từ (1), (2) và (3) suy ra A,M,D thẳng hàng(đpcm)

 

 

 

a: Xet ΔABD vuông tại A và ΔHBD vuông tại H có

BD chung

góc ABD=góc HBD

=>ΔABD=ΔHBD

b: BA=BH

DA=DH

=>BD là trung trực của AH

c: Xét ΔADK và ΔHDC có

DA=DH

góc ADK=góc HDC

DK=DC

=>ΔADK=ΔHDC
=>góc DAK=góc DHC=90 độ

=>góc BAK=90+90=180 độ

=>B,A,K thẳng hàng